Direct generation of human naive induced pluripotent stem cells from somatic cells in microfluidics

Induced pluripotent stem cells (iPSCs) are generated via the expression of the transcription factors OCT4 (also known as POU5F1 ), SOX2 , KLF4 and cMYC (OSKM) in somatic cells. In contrast to murine naive iPSCs, conventional human iPSCs are in a more developmentally advanced state called primed plur...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature cell biology 2019-02, Vol.21 (2), p.275-286
Hauptverfasser: Giulitti, Stefano, Pellegrini, Marco, Zorzan, Irene, Martini, Paolo, Gagliano, Onelia, Mutarelli, Margherita, Ziller, Michael Johannes, Cacchiarelli, Davide, Romualdi, Chiara, Elvassore, Nicola, Martello, Graziano
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 286
container_issue 2
container_start_page 275
container_title Nature cell biology
container_volume 21
creator Giulitti, Stefano
Pellegrini, Marco
Zorzan, Irene
Martini, Paolo
Gagliano, Onelia
Mutarelli, Margherita
Ziller, Michael Johannes
Cacchiarelli, Davide
Romualdi, Chiara
Elvassore, Nicola
Martello, Graziano
description Induced pluripotent stem cells (iPSCs) are generated via the expression of the transcription factors OCT4 (also known as POU5F1 ), SOX2 , KLF4 and cMYC (OSKM) in somatic cells. In contrast to murine naive iPSCs, conventional human iPSCs are in a more developmentally advanced state called primed pluripotency. Here, we report that human naive iPSCs (niPSCs) can be generated directly from fewer than 1,000 primary human somatic cells, without requiring stable genetic manipulation, via the delivery of modified messenger RNAs using microfluidics. Expression of the OSKM factors in combination with NANOG for 12 days generates niPSCs that are free of transgenes, karyotypically normal and display transcriptional, epigenetic and metabolic features indicative of the naive state. Importantly, niPSCs efficiently differentiate into all three germ layers. While niPSCs can be generated at low frequency under conventional conditions, our microfluidics approach enables the robust and cost-effective production of patient-specific niPSCs for regenerative medicine applications, including disease modelling and drug screening. Giulitti et al. deliver modified mRNAs encoding OCT3/4, SOX2, KLF4 and cMYC as well as NANOG in microfluidics to directly convert human fibroblasts into naive induced pluripotent stem cells; the confined environment leads to enhanced efficiency and homogeneity compared to traditional methods.
doi_str_mv 10.1038/s41556-018-0254-5
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2162498028</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A572603209</galeid><sourcerecordid>A572603209</sourcerecordid><originalsourceid>FETCH-LOGICAL-c473t-f02ba83fd9405f8a00ebb9cecd447514ad24efd4688160fc2fb845de50daaa5c3</originalsourceid><addsrcrecordid>eNp1kk1v1DAQhiMEoqXwA7ggS1zgkDJ27MQ5VqWFSpWQ-DhbXnu8uErsxXYQ_Hsc7UK1COSDrZnnHc2M36Z5TuGcQiffZE6F6FugsgUmeCseNKeUD33L-2F8uL570Q7dyE6aJznfAVDOYXjcnHQgRik6OG3MW5_QFLLFgEkXHwOJjnxdZh1I0P47Eh_sYtCS3bQkv4sFQyG54EwMTlMmLsWZ5DhXrTmEfCCzNym6afHWm_y0eeT0lPHZ4T5rvlxffb58395-eHdzeXHbGj50pXXANlp2zo4chJMaADeb0aCxnA-Ccm0ZR2d5LyXtwRnmNpILiwKs1lqY7qx5ta-7S_Hbgrmo2ee1JR0wLlkx2jM-SmCyoi__Qu_ikkLtrlIDHzjn43hPbfWEygcXS9JmLaouxMB66Bis1Pk_qHos1jXEgM7X-JHg9ZGgMgV_lK1eclY3nz4es3TP1n3mnNCpXfKzTj8VBbWaQO1NoKoJ1GoCJarmxWG4ZTOj_aP4_esVYHsg11TYYrqf_v9VfwG0mrtd</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2174744499</pqid></control><display><type>article</type><title>Direct generation of human naive induced pluripotent stem cells from somatic cells in microfluidics</title><source>MEDLINE</source><source>Nature</source><source>Springer Nature - Complete Springer Journals</source><creator>Giulitti, Stefano ; Pellegrini, Marco ; Zorzan, Irene ; Martini, Paolo ; Gagliano, Onelia ; Mutarelli, Margherita ; Ziller, Michael Johannes ; Cacchiarelli, Davide ; Romualdi, Chiara ; Elvassore, Nicola ; Martello, Graziano</creator><creatorcontrib>Giulitti, Stefano ; Pellegrini, Marco ; Zorzan, Irene ; Martini, Paolo ; Gagliano, Onelia ; Mutarelli, Margherita ; Ziller, Michael Johannes ; Cacchiarelli, Davide ; Romualdi, Chiara ; Elvassore, Nicola ; Martello, Graziano</creatorcontrib><description>Induced pluripotent stem cells (iPSCs) are generated via the expression of the transcription factors OCT4 (also known as POU5F1 ), SOX2 , KLF4 and cMYC (OSKM) in somatic cells. In contrast to murine naive iPSCs, conventional human iPSCs are in a more developmentally advanced state called primed pluripotency. Here, we report that human naive iPSCs (niPSCs) can be generated directly from fewer than 1,000 primary human somatic cells, without requiring stable genetic manipulation, via the delivery of modified messenger RNAs using microfluidics. Expression of the OSKM factors in combination with NANOG for 12 days generates niPSCs that are free of transgenes, karyotypically normal and display transcriptional, epigenetic and metabolic features indicative of the naive state. Importantly, niPSCs efficiently differentiate into all three germ layers. While niPSCs can be generated at low frequency under conventional conditions, our microfluidics approach enables the robust and cost-effective production of patient-specific niPSCs for regenerative medicine applications, including disease modelling and drug screening. Giulitti et al. deliver modified mRNAs encoding OCT3/4, SOX2, KLF4 and cMYC as well as NANOG in microfluidics to directly convert human fibroblasts into naive induced pluripotent stem cells; the confined environment leads to enhanced efficiency and homogeneity compared to traditional methods.</description><identifier>ISSN: 1465-7392</identifier><identifier>EISSN: 1476-4679</identifier><identifier>DOI: 10.1038/s41556-018-0254-5</identifier><identifier>PMID: 30598530</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13/1 ; 13/100 ; 13/106 ; 13/109 ; 13/21 ; 13/31 ; 13/51 ; 13/62 ; 14/19 ; 38/77 ; 38/91 ; 45/23 ; 631/136/2444 ; 631/532 ; 631/532/2435 ; 96 ; Animals ; Biomedical and Life Sciences ; Cancer Research ; Cell Biology ; Cell Differentiation ; Cells, Cultured ; Developmental Biology ; Displays (Marketing) ; DNA binding proteins ; Drug evaluation ; Drug screening ; Epigenetic inheritance ; Genetic aspects ; Genetic engineering ; Germ Layers - cytology ; Germ Layers - metabolism ; Health screening ; Human genetic engineering ; Humans ; Induced Pluripotent Stem Cells - cytology ; Induced Pluripotent Stem Cells - metabolism ; Karyotype ; KLF4 protein ; Kruppel-Like Transcription Factors - genetics ; Life Sciences ; Mammals ; Messenger RNA ; Methods ; Mice ; Microfluidics ; Microfluidics - methods ; Oct-4 protein ; Octamer Transcription Factor-3 - genetics ; Pluripotency ; Proto-Oncogene Proteins c-myc - genetics ; Regenerative medicine ; Regenerative Medicine - methods ; RNA, Messenger - genetics ; RNA, Messenger - metabolism ; Somatic cells ; SOXB1 Transcription Factors - genetics ; Stem cell transplantation ; Stem Cells ; technical-report ; Tissue engineering ; Transcription factors ; Transgenes</subject><ispartof>Nature cell biology, 2019-02, Vol.21 (2), p.275-286</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2018</rights><rights>COPYRIGHT 2019 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Feb 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c473t-f02ba83fd9405f8a00ebb9cecd447514ad24efd4688160fc2fb845de50daaa5c3</citedby><cites>FETCH-LOGICAL-c473t-f02ba83fd9405f8a00ebb9cecd447514ad24efd4688160fc2fb845de50daaa5c3</cites><orcidid>0000-0002-7749-653X ; 0000-0001-5520-085X ; 0000-0002-7029-6287 ; 0000-0002-3724-6640</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41556-018-0254-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41556-018-0254-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51298</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30598530$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Giulitti, Stefano</creatorcontrib><creatorcontrib>Pellegrini, Marco</creatorcontrib><creatorcontrib>Zorzan, Irene</creatorcontrib><creatorcontrib>Martini, Paolo</creatorcontrib><creatorcontrib>Gagliano, Onelia</creatorcontrib><creatorcontrib>Mutarelli, Margherita</creatorcontrib><creatorcontrib>Ziller, Michael Johannes</creatorcontrib><creatorcontrib>Cacchiarelli, Davide</creatorcontrib><creatorcontrib>Romualdi, Chiara</creatorcontrib><creatorcontrib>Elvassore, Nicola</creatorcontrib><creatorcontrib>Martello, Graziano</creatorcontrib><title>Direct generation of human naive induced pluripotent stem cells from somatic cells in microfluidics</title><title>Nature cell biology</title><addtitle>Nat Cell Biol</addtitle><addtitle>Nat Cell Biol</addtitle><description>Induced pluripotent stem cells (iPSCs) are generated via the expression of the transcription factors OCT4 (also known as POU5F1 ), SOX2 , KLF4 and cMYC (OSKM) in somatic cells. In contrast to murine naive iPSCs, conventional human iPSCs are in a more developmentally advanced state called primed pluripotency. Here, we report that human naive iPSCs (niPSCs) can be generated directly from fewer than 1,000 primary human somatic cells, without requiring stable genetic manipulation, via the delivery of modified messenger RNAs using microfluidics. Expression of the OSKM factors in combination with NANOG for 12 days generates niPSCs that are free of transgenes, karyotypically normal and display transcriptional, epigenetic and metabolic features indicative of the naive state. Importantly, niPSCs efficiently differentiate into all three germ layers. While niPSCs can be generated at low frequency under conventional conditions, our microfluidics approach enables the robust and cost-effective production of patient-specific niPSCs for regenerative medicine applications, including disease modelling and drug screening. Giulitti et al. deliver modified mRNAs encoding OCT3/4, SOX2, KLF4 and cMYC as well as NANOG in microfluidics to directly convert human fibroblasts into naive induced pluripotent stem cells; the confined environment leads to enhanced efficiency and homogeneity compared to traditional methods.</description><subject>13/1</subject><subject>13/100</subject><subject>13/106</subject><subject>13/109</subject><subject>13/21</subject><subject>13/31</subject><subject>13/51</subject><subject>13/62</subject><subject>14/19</subject><subject>38/77</subject><subject>38/91</subject><subject>45/23</subject><subject>631/136/2444</subject><subject>631/532</subject><subject>631/532/2435</subject><subject>96</subject><subject>Animals</subject><subject>Biomedical and Life Sciences</subject><subject>Cancer Research</subject><subject>Cell Biology</subject><subject>Cell Differentiation</subject><subject>Cells, Cultured</subject><subject>Developmental Biology</subject><subject>Displays (Marketing)</subject><subject>DNA binding proteins</subject><subject>Drug evaluation</subject><subject>Drug screening</subject><subject>Epigenetic inheritance</subject><subject>Genetic aspects</subject><subject>Genetic engineering</subject><subject>Germ Layers - cytology</subject><subject>Germ Layers - metabolism</subject><subject>Health screening</subject><subject>Human genetic engineering</subject><subject>Humans</subject><subject>Induced Pluripotent Stem Cells - cytology</subject><subject>Induced Pluripotent Stem Cells - metabolism</subject><subject>Karyotype</subject><subject>KLF4 protein</subject><subject>Kruppel-Like Transcription Factors - genetics</subject><subject>Life Sciences</subject><subject>Mammals</subject><subject>Messenger RNA</subject><subject>Methods</subject><subject>Mice</subject><subject>Microfluidics</subject><subject>Microfluidics - methods</subject><subject>Oct-4 protein</subject><subject>Octamer Transcription Factor-3 - genetics</subject><subject>Pluripotency</subject><subject>Proto-Oncogene Proteins c-myc - genetics</subject><subject>Regenerative medicine</subject><subject>Regenerative Medicine - methods</subject><subject>RNA, Messenger - genetics</subject><subject>RNA, Messenger - metabolism</subject><subject>Somatic cells</subject><subject>SOXB1 Transcription Factors - genetics</subject><subject>Stem cell transplantation</subject><subject>Stem Cells</subject><subject>technical-report</subject><subject>Tissue engineering</subject><subject>Transcription factors</subject><subject>Transgenes</subject><issn>1465-7392</issn><issn>1476-4679</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kk1v1DAQhiMEoqXwA7ggS1zgkDJ27MQ5VqWFSpWQ-DhbXnu8uErsxXYQ_Hsc7UK1COSDrZnnHc2M36Z5TuGcQiffZE6F6FugsgUmeCseNKeUD33L-2F8uL570Q7dyE6aJznfAVDOYXjcnHQgRik6OG3MW5_QFLLFgEkXHwOJjnxdZh1I0P47Eh_sYtCS3bQkv4sFQyG54EwMTlMmLsWZ5DhXrTmEfCCzNym6afHWm_y0eeT0lPHZ4T5rvlxffb58395-eHdzeXHbGj50pXXANlp2zo4chJMaADeb0aCxnA-Ccm0ZR2d5LyXtwRnmNpILiwKs1lqY7qx5ta-7S_Hbgrmo2ee1JR0wLlkx2jM-SmCyoi__Qu_ikkLtrlIDHzjn43hPbfWEygcXS9JmLaouxMB66Bis1Pk_qHos1jXEgM7X-JHg9ZGgMgV_lK1eclY3nz4es3TP1n3mnNCpXfKzTj8VBbWaQO1NoKoJ1GoCJarmxWG4ZTOj_aP4_esVYHsg11TYYrqf_v9VfwG0mrtd</recordid><startdate>20190201</startdate><enddate>20190201</enddate><creator>Giulitti, Stefano</creator><creator>Pellegrini, Marco</creator><creator>Zorzan, Irene</creator><creator>Martini, Paolo</creator><creator>Gagliano, Onelia</creator><creator>Mutarelli, Margherita</creator><creator>Ziller, Michael Johannes</creator><creator>Cacchiarelli, Davide</creator><creator>Romualdi, Chiara</creator><creator>Elvassore, Nicola</creator><creator>Martello, Graziano</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-7749-653X</orcidid><orcidid>https://orcid.org/0000-0001-5520-085X</orcidid><orcidid>https://orcid.org/0000-0002-7029-6287</orcidid><orcidid>https://orcid.org/0000-0002-3724-6640</orcidid></search><sort><creationdate>20190201</creationdate><title>Direct generation of human naive induced pluripotent stem cells from somatic cells in microfluidics</title><author>Giulitti, Stefano ; Pellegrini, Marco ; Zorzan, Irene ; Martini, Paolo ; Gagliano, Onelia ; Mutarelli, Margherita ; Ziller, Michael Johannes ; Cacchiarelli, Davide ; Romualdi, Chiara ; Elvassore, Nicola ; Martello, Graziano</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c473t-f02ba83fd9405f8a00ebb9cecd447514ad24efd4688160fc2fb845de50daaa5c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>13/1</topic><topic>13/100</topic><topic>13/106</topic><topic>13/109</topic><topic>13/21</topic><topic>13/31</topic><topic>13/51</topic><topic>13/62</topic><topic>14/19</topic><topic>38/77</topic><topic>38/91</topic><topic>45/23</topic><topic>631/136/2444</topic><topic>631/532</topic><topic>631/532/2435</topic><topic>96</topic><topic>Animals</topic><topic>Biomedical and Life Sciences</topic><topic>Cancer Research</topic><topic>Cell Biology</topic><topic>Cell Differentiation</topic><topic>Cells, Cultured</topic><topic>Developmental Biology</topic><topic>Displays (Marketing)</topic><topic>DNA binding proteins</topic><topic>Drug evaluation</topic><topic>Drug screening</topic><topic>Epigenetic inheritance</topic><topic>Genetic aspects</topic><topic>Genetic engineering</topic><topic>Germ Layers - cytology</topic><topic>Germ Layers - metabolism</topic><topic>Health screening</topic><topic>Human genetic engineering</topic><topic>Humans</topic><topic>Induced Pluripotent Stem Cells - cytology</topic><topic>Induced Pluripotent Stem Cells - metabolism</topic><topic>Karyotype</topic><topic>KLF4 protein</topic><topic>Kruppel-Like Transcription Factors - genetics</topic><topic>Life Sciences</topic><topic>Mammals</topic><topic>Messenger RNA</topic><topic>Methods</topic><topic>Mice</topic><topic>Microfluidics</topic><topic>Microfluidics - methods</topic><topic>Oct-4 protein</topic><topic>Octamer Transcription Factor-3 - genetics</topic><topic>Pluripotency</topic><topic>Proto-Oncogene Proteins c-myc - genetics</topic><topic>Regenerative medicine</topic><topic>Regenerative Medicine - methods</topic><topic>RNA, Messenger - genetics</topic><topic>RNA, Messenger - metabolism</topic><topic>Somatic cells</topic><topic>SOXB1 Transcription Factors - genetics</topic><topic>Stem cell transplantation</topic><topic>Stem Cells</topic><topic>technical-report</topic><topic>Tissue engineering</topic><topic>Transcription factors</topic><topic>Transgenes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Giulitti, Stefano</creatorcontrib><creatorcontrib>Pellegrini, Marco</creatorcontrib><creatorcontrib>Zorzan, Irene</creatorcontrib><creatorcontrib>Martini, Paolo</creatorcontrib><creatorcontrib>Gagliano, Onelia</creatorcontrib><creatorcontrib>Mutarelli, Margherita</creatorcontrib><creatorcontrib>Ziller, Michael Johannes</creatorcontrib><creatorcontrib>Cacchiarelli, Davide</creatorcontrib><creatorcontrib>Romualdi, Chiara</creatorcontrib><creatorcontrib>Elvassore, Nicola</creatorcontrib><creatorcontrib>Martello, Graziano</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature cell biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Giulitti, Stefano</au><au>Pellegrini, Marco</au><au>Zorzan, Irene</au><au>Martini, Paolo</au><au>Gagliano, Onelia</au><au>Mutarelli, Margherita</au><au>Ziller, Michael Johannes</au><au>Cacchiarelli, Davide</au><au>Romualdi, Chiara</au><au>Elvassore, Nicola</au><au>Martello, Graziano</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Direct generation of human naive induced pluripotent stem cells from somatic cells in microfluidics</atitle><jtitle>Nature cell biology</jtitle><stitle>Nat Cell Biol</stitle><addtitle>Nat Cell Biol</addtitle><date>2019-02-01</date><risdate>2019</risdate><volume>21</volume><issue>2</issue><spage>275</spage><epage>286</epage><pages>275-286</pages><issn>1465-7392</issn><eissn>1476-4679</eissn><abstract>Induced pluripotent stem cells (iPSCs) are generated via the expression of the transcription factors OCT4 (also known as POU5F1 ), SOX2 , KLF4 and cMYC (OSKM) in somatic cells. In contrast to murine naive iPSCs, conventional human iPSCs are in a more developmentally advanced state called primed pluripotency. Here, we report that human naive iPSCs (niPSCs) can be generated directly from fewer than 1,000 primary human somatic cells, without requiring stable genetic manipulation, via the delivery of modified messenger RNAs using microfluidics. Expression of the OSKM factors in combination with NANOG for 12 days generates niPSCs that are free of transgenes, karyotypically normal and display transcriptional, epigenetic and metabolic features indicative of the naive state. Importantly, niPSCs efficiently differentiate into all three germ layers. While niPSCs can be generated at low frequency under conventional conditions, our microfluidics approach enables the robust and cost-effective production of patient-specific niPSCs for regenerative medicine applications, including disease modelling and drug screening. Giulitti et al. deliver modified mRNAs encoding OCT3/4, SOX2, KLF4 and cMYC as well as NANOG in microfluidics to directly convert human fibroblasts into naive induced pluripotent stem cells; the confined environment leads to enhanced efficiency and homogeneity compared to traditional methods.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>30598530</pmid><doi>10.1038/s41556-018-0254-5</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-7749-653X</orcidid><orcidid>https://orcid.org/0000-0001-5520-085X</orcidid><orcidid>https://orcid.org/0000-0002-7029-6287</orcidid><orcidid>https://orcid.org/0000-0002-3724-6640</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1465-7392
ispartof Nature cell biology, 2019-02, Vol.21 (2), p.275-286
issn 1465-7392
1476-4679
language eng
recordid cdi_proquest_miscellaneous_2162498028
source MEDLINE; Nature; Springer Nature - Complete Springer Journals
subjects 13/1
13/100
13/106
13/109
13/21
13/31
13/51
13/62
14/19
38/77
38/91
45/23
631/136/2444
631/532
631/532/2435
96
Animals
Biomedical and Life Sciences
Cancer Research
Cell Biology
Cell Differentiation
Cells, Cultured
Developmental Biology
Displays (Marketing)
DNA binding proteins
Drug evaluation
Drug screening
Epigenetic inheritance
Genetic aspects
Genetic engineering
Germ Layers - cytology
Germ Layers - metabolism
Health screening
Human genetic engineering
Humans
Induced Pluripotent Stem Cells - cytology
Induced Pluripotent Stem Cells - metabolism
Karyotype
KLF4 protein
Kruppel-Like Transcription Factors - genetics
Life Sciences
Mammals
Messenger RNA
Methods
Mice
Microfluidics
Microfluidics - methods
Oct-4 protein
Octamer Transcription Factor-3 - genetics
Pluripotency
Proto-Oncogene Proteins c-myc - genetics
Regenerative medicine
Regenerative Medicine - methods
RNA, Messenger - genetics
RNA, Messenger - metabolism
Somatic cells
SOXB1 Transcription Factors - genetics
Stem cell transplantation
Stem Cells
technical-report
Tissue engineering
Transcription factors
Transgenes
title Direct generation of human naive induced pluripotent stem cells from somatic cells in microfluidics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T21%3A17%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Direct%20generation%20of%20human%20naive%20induced%20pluripotent%20stem%20cells%20from%20somatic%20cells%20in%20microfluidics&rft.jtitle=Nature%20cell%20biology&rft.au=Giulitti,%20Stefano&rft.date=2019-02-01&rft.volume=21&rft.issue=2&rft.spage=275&rft.epage=286&rft.pages=275-286&rft.issn=1465-7392&rft.eissn=1476-4679&rft_id=info:doi/10.1038/s41556-018-0254-5&rft_dat=%3Cgale_proqu%3EA572603209%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2174744499&rft_id=info:pmid/30598530&rft_galeid=A572603209&rfr_iscdi=true