Programmable Locomotion Mechanisms of Nanowires with Semihard Magnetic Properties Near a Surface Boundary
We report on the simplest magnetic nanowire-based surface walker that is able to change its propulsion mechanism near a surface boundary as a function of the applied rotating magnetic field frequency. The nanowires are made of CoPt alloy with semihard magnetic properties synthesized by means of temp...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2019-01, Vol.11 (3), p.3214-3223 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3223 |
---|---|
container_issue | 3 |
container_start_page | 3214 |
container_title | ACS applied materials & interfaces |
container_volume | 11 |
creator | Jang, Bumjin Hong, Ayoung Alcantara, Carlos Chatzipirpiridis, George Martí, Xavier Pellicer, Eva Sort, Jordi Harduf, Yuval Or, Yizhar Nelson, Bradley J Pané, Salvador |
description | We report on the simplest magnetic nanowire-based surface walker that is able to change its propulsion mechanism near a surface boundary as a function of the applied rotating magnetic field frequency. The nanowires are made of CoPt alloy with semihard magnetic properties synthesized by means of template-assisted galvanostatic electrodeposition. The semihard magnetic behavior of the nanowires allows for programming their alignment with an applied magnetic field as they can retain their magnetization direction after premagnetizing them. By engineering the macroscopic magnetization, the nanowires’ speed and locomotion mechanism are set to tumbling, precession, or rolling depending on the frequency of an applied rotating magnetic field. Also, we present a mathematical analysis that predicts the translational speed of the nanowire near the surface, showing a very good agreement with experimental results. Interestingly, the maximal speed is obtained at an optimal frequency (∼10 Hz), which is far below the theoretical step-out frequency (∼345 Hz). Finally, vortices are found by tracking polystyrene microbeads, trapped around the CoPt nanowire, when they are propelled by precession and rolling motion. |
doi_str_mv | 10.1021/acsami.8b16907 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2161064810</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2161064810</sourcerecordid><originalsourceid>FETCH-LOGICAL-a370t-f7ac37e420a5e6a535c618f9b05d35b5b2e98b18907c6ceabe83b11232a0cda3</originalsourceid><addsrcrecordid>eNp1kD1PwzAQhi0EoqWwMiKPCKnFH3HijlDxJbUFCfbo4lyoUR0XO1HFv8eohY3pbnju1b0PIeecTTgT_BpMBGcnuuL5lBUHZMinWTbWQonDvz3LBuQkxg_GcimYOiYDyZTWhdZDYl-Cfw_gHFRrpHNvvPOd9S1doFlBa6OL1Dd0Ca3f2oCRbm23oq_o7ApCTRfw3mJnDU0xGwydTcQSIVCgr31owCC99X1bQ_g6JUcNrCOe7eeIvN3fvc0ex_Pnh6fZzXwMsmDduCnAyAIzwUBhDkoqk3PdTCumaqkqVQmcprY6tTW5QahQy4pzIQUwU4Mckctd7Cb4zx5jVzobDa7X0KLvYyl4zlmeac4SOtmhJvgYAzblJliXXi05K3_slju75d5uOrjYZ_eVw_oP_9WZgKsdkA7LD9-HNjX9L-0bf_iGRQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2161064810</pqid></control><display><type>article</type><title>Programmable Locomotion Mechanisms of Nanowires with Semihard Magnetic Properties Near a Surface Boundary</title><source>ACS Publications</source><creator>Jang, Bumjin ; Hong, Ayoung ; Alcantara, Carlos ; Chatzipirpiridis, George ; Martí, Xavier ; Pellicer, Eva ; Sort, Jordi ; Harduf, Yuval ; Or, Yizhar ; Nelson, Bradley J ; Pané, Salvador</creator><creatorcontrib>Jang, Bumjin ; Hong, Ayoung ; Alcantara, Carlos ; Chatzipirpiridis, George ; Martí, Xavier ; Pellicer, Eva ; Sort, Jordi ; Harduf, Yuval ; Or, Yizhar ; Nelson, Bradley J ; Pané, Salvador</creatorcontrib><description>We report on the simplest magnetic nanowire-based surface walker that is able to change its propulsion mechanism near a surface boundary as a function of the applied rotating magnetic field frequency. The nanowires are made of CoPt alloy with semihard magnetic properties synthesized by means of template-assisted galvanostatic electrodeposition. The semihard magnetic behavior of the nanowires allows for programming their alignment with an applied magnetic field as they can retain their magnetization direction after premagnetizing them. By engineering the macroscopic magnetization, the nanowires’ speed and locomotion mechanism are set to tumbling, precession, or rolling depending on the frequency of an applied rotating magnetic field. Also, we present a mathematical analysis that predicts the translational speed of the nanowire near the surface, showing a very good agreement with experimental results. Interestingly, the maximal speed is obtained at an optimal frequency (∼10 Hz), which is far below the theoretical step-out frequency (∼345 Hz). Finally, vortices are found by tracking polystyrene microbeads, trapped around the CoPt nanowire, when they are propelled by precession and rolling motion.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.8b16907</identifier><identifier>PMID: 30588788</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>ACS applied materials & interfaces, 2019-01, Vol.11 (3), p.3214-3223</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a370t-f7ac37e420a5e6a535c618f9b05d35b5b2e98b18907c6ceabe83b11232a0cda3</citedby><cites>FETCH-LOGICAL-a370t-f7ac37e420a5e6a535c618f9b05d35b5b2e98b18907c6ceabe83b11232a0cda3</cites><orcidid>0000-0003-1213-3639 ; 0000-0002-8901-0998 ; 0000-0003-0147-8287</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.8b16907$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.8b16907$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>315,782,786,2769,27085,27933,27934,56747,56797</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30588788$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jang, Bumjin</creatorcontrib><creatorcontrib>Hong, Ayoung</creatorcontrib><creatorcontrib>Alcantara, Carlos</creatorcontrib><creatorcontrib>Chatzipirpiridis, George</creatorcontrib><creatorcontrib>Martí, Xavier</creatorcontrib><creatorcontrib>Pellicer, Eva</creatorcontrib><creatorcontrib>Sort, Jordi</creatorcontrib><creatorcontrib>Harduf, Yuval</creatorcontrib><creatorcontrib>Or, Yizhar</creatorcontrib><creatorcontrib>Nelson, Bradley J</creatorcontrib><creatorcontrib>Pané, Salvador</creatorcontrib><title>Programmable Locomotion Mechanisms of Nanowires with Semihard Magnetic Properties Near a Surface Boundary</title><title>ACS applied materials & interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>We report on the simplest magnetic nanowire-based surface walker that is able to change its propulsion mechanism near a surface boundary as a function of the applied rotating magnetic field frequency. The nanowires are made of CoPt alloy with semihard magnetic properties synthesized by means of template-assisted galvanostatic electrodeposition. The semihard magnetic behavior of the nanowires allows for programming their alignment with an applied magnetic field as they can retain their magnetization direction after premagnetizing them. By engineering the macroscopic magnetization, the nanowires’ speed and locomotion mechanism are set to tumbling, precession, or rolling depending on the frequency of an applied rotating magnetic field. Also, we present a mathematical analysis that predicts the translational speed of the nanowire near the surface, showing a very good agreement with experimental results. Interestingly, the maximal speed is obtained at an optimal frequency (∼10 Hz), which is far below the theoretical step-out frequency (∼345 Hz). Finally, vortices are found by tracking polystyrene microbeads, trapped around the CoPt nanowire, when they are propelled by precession and rolling motion.</description><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kD1PwzAQhi0EoqWwMiKPCKnFH3HijlDxJbUFCfbo4lyoUR0XO1HFv8eohY3pbnju1b0PIeecTTgT_BpMBGcnuuL5lBUHZMinWTbWQonDvz3LBuQkxg_GcimYOiYDyZTWhdZDYl-Cfw_gHFRrpHNvvPOd9S1doFlBa6OL1Dd0Ca3f2oCRbm23oq_o7ApCTRfw3mJnDU0xGwydTcQSIVCgr31owCC99X1bQ_g6JUcNrCOe7eeIvN3fvc0ex_Pnh6fZzXwMsmDduCnAyAIzwUBhDkoqk3PdTCumaqkqVQmcprY6tTW5QahQy4pzIQUwU4Mckctd7Cb4zx5jVzobDa7X0KLvYyl4zlmeac4SOtmhJvgYAzblJliXXi05K3_slju75d5uOrjYZ_eVw_oP_9WZgKsdkA7LD9-HNjX9L-0bf_iGRQ</recordid><startdate>20190123</startdate><enddate>20190123</enddate><creator>Jang, Bumjin</creator><creator>Hong, Ayoung</creator><creator>Alcantara, Carlos</creator><creator>Chatzipirpiridis, George</creator><creator>Martí, Xavier</creator><creator>Pellicer, Eva</creator><creator>Sort, Jordi</creator><creator>Harduf, Yuval</creator><creator>Or, Yizhar</creator><creator>Nelson, Bradley J</creator><creator>Pané, Salvador</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1213-3639</orcidid><orcidid>https://orcid.org/0000-0002-8901-0998</orcidid><orcidid>https://orcid.org/0000-0003-0147-8287</orcidid></search><sort><creationdate>20190123</creationdate><title>Programmable Locomotion Mechanisms of Nanowires with Semihard Magnetic Properties Near a Surface Boundary</title><author>Jang, Bumjin ; Hong, Ayoung ; Alcantara, Carlos ; Chatzipirpiridis, George ; Martí, Xavier ; Pellicer, Eva ; Sort, Jordi ; Harduf, Yuval ; Or, Yizhar ; Nelson, Bradley J ; Pané, Salvador</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a370t-f7ac37e420a5e6a535c618f9b05d35b5b2e98b18907c6ceabe83b11232a0cda3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jang, Bumjin</creatorcontrib><creatorcontrib>Hong, Ayoung</creatorcontrib><creatorcontrib>Alcantara, Carlos</creatorcontrib><creatorcontrib>Chatzipirpiridis, George</creatorcontrib><creatorcontrib>Martí, Xavier</creatorcontrib><creatorcontrib>Pellicer, Eva</creatorcontrib><creatorcontrib>Sort, Jordi</creatorcontrib><creatorcontrib>Harduf, Yuval</creatorcontrib><creatorcontrib>Or, Yizhar</creatorcontrib><creatorcontrib>Nelson, Bradley J</creatorcontrib><creatorcontrib>Pané, Salvador</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials & interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jang, Bumjin</au><au>Hong, Ayoung</au><au>Alcantara, Carlos</au><au>Chatzipirpiridis, George</au><au>Martí, Xavier</au><au>Pellicer, Eva</au><au>Sort, Jordi</au><au>Harduf, Yuval</au><au>Or, Yizhar</au><au>Nelson, Bradley J</au><au>Pané, Salvador</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Programmable Locomotion Mechanisms of Nanowires with Semihard Magnetic Properties Near a Surface Boundary</atitle><jtitle>ACS applied materials & interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2019-01-23</date><risdate>2019</risdate><volume>11</volume><issue>3</issue><spage>3214</spage><epage>3223</epage><pages>3214-3223</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>We report on the simplest magnetic nanowire-based surface walker that is able to change its propulsion mechanism near a surface boundary as a function of the applied rotating magnetic field frequency. The nanowires are made of CoPt alloy with semihard magnetic properties synthesized by means of template-assisted galvanostatic electrodeposition. The semihard magnetic behavior of the nanowires allows for programming their alignment with an applied magnetic field as they can retain their magnetization direction after premagnetizing them. By engineering the macroscopic magnetization, the nanowires’ speed and locomotion mechanism are set to tumbling, precession, or rolling depending on the frequency of an applied rotating magnetic field. Also, we present a mathematical analysis that predicts the translational speed of the nanowire near the surface, showing a very good agreement with experimental results. Interestingly, the maximal speed is obtained at an optimal frequency (∼10 Hz), which is far below the theoretical step-out frequency (∼345 Hz). Finally, vortices are found by tracking polystyrene microbeads, trapped around the CoPt nanowire, when they are propelled by precession and rolling motion.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>30588788</pmid><doi>10.1021/acsami.8b16907</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-1213-3639</orcidid><orcidid>https://orcid.org/0000-0002-8901-0998</orcidid><orcidid>https://orcid.org/0000-0003-0147-8287</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1944-8244 |
ispartof | ACS applied materials & interfaces, 2019-01, Vol.11 (3), p.3214-3223 |
issn | 1944-8244 1944-8252 |
language | eng |
recordid | cdi_proquest_miscellaneous_2161064810 |
source | ACS Publications |
title | Programmable Locomotion Mechanisms of Nanowires with Semihard Magnetic Properties Near a Surface Boundary |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-03T00%3A34%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Programmable%20Locomotion%20Mechanisms%20of%20Nanowires%20with%20Semihard%20Magnetic%20Properties%20Near%20a%20Surface%20Boundary&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Jang,%20Bumjin&rft.date=2019-01-23&rft.volume=11&rft.issue=3&rft.spage=3214&rft.epage=3223&rft.pages=3214-3223&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.8b16907&rft_dat=%3Cproquest_cross%3E2161064810%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2161064810&rft_id=info:pmid/30588788&rfr_iscdi=true |