Programmable Locomotion Mechanisms of Nanowires with Semihard Magnetic Properties Near a Surface Boundary

We report on the simplest magnetic nanowire-based surface walker that is able to change its propulsion mechanism near a surface boundary as a function of the applied rotating magnetic field frequency. The nanowires are made of CoPt alloy with semihard magnetic properties synthesized by means of temp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2019-01, Vol.11 (3), p.3214-3223
Hauptverfasser: Jang, Bumjin, Hong, Ayoung, Alcantara, Carlos, Chatzipirpiridis, George, Martí, Xavier, Pellicer, Eva, Sort, Jordi, Harduf, Yuval, Or, Yizhar, Nelson, Bradley J, Pané, Salvador
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3223
container_issue 3
container_start_page 3214
container_title ACS applied materials & interfaces
container_volume 11
creator Jang, Bumjin
Hong, Ayoung
Alcantara, Carlos
Chatzipirpiridis, George
Martí, Xavier
Pellicer, Eva
Sort, Jordi
Harduf, Yuval
Or, Yizhar
Nelson, Bradley J
Pané, Salvador
description We report on the simplest magnetic nanowire-based surface walker that is able to change its propulsion mechanism near a surface boundary as a function of the applied rotating magnetic field frequency. The nanowires are made of CoPt alloy with semihard magnetic properties synthesized by means of template-assisted galvanostatic electrodeposition. The semihard magnetic behavior of the nanowires allows for programming their alignment with an applied magnetic field as they can retain their magnetization direction after premagnetizing them. By engineering the macroscopic magnetization, the nanowires’ speed and locomotion mechanism are set to tumbling, precession, or rolling depending on the frequency of an applied rotating magnetic field. Also, we present a mathematical analysis that predicts the translational speed of the nanowire near the surface, showing a very good agreement with experimental results. Interestingly, the maximal speed is obtained at an optimal frequency (∼10 Hz), which is far below the theoretical step-out frequency (∼345 Hz). Finally, vortices are found by tracking polystyrene microbeads, trapped around the CoPt nanowire, when they are propelled by precession and rolling motion.
doi_str_mv 10.1021/acsami.8b16907
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2161064810</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2161064810</sourcerecordid><originalsourceid>FETCH-LOGICAL-a370t-f7ac37e420a5e6a535c618f9b05d35b5b2e98b18907c6ceabe83b11232a0cda3</originalsourceid><addsrcrecordid>eNp1kD1PwzAQhi0EoqWwMiKPCKnFH3HijlDxJbUFCfbo4lyoUR0XO1HFv8eohY3pbnju1b0PIeecTTgT_BpMBGcnuuL5lBUHZMinWTbWQonDvz3LBuQkxg_GcimYOiYDyZTWhdZDYl-Cfw_gHFRrpHNvvPOd9S1doFlBa6OL1Dd0Ca3f2oCRbm23oq_o7ApCTRfw3mJnDU0xGwydTcQSIVCgr31owCC99X1bQ_g6JUcNrCOe7eeIvN3fvc0ex_Pnh6fZzXwMsmDduCnAyAIzwUBhDkoqk3PdTCumaqkqVQmcprY6tTW5QahQy4pzIQUwU4Mckctd7Cb4zx5jVzobDa7X0KLvYyl4zlmeac4SOtmhJvgYAzblJliXXi05K3_slju75d5uOrjYZ_eVw_oP_9WZgKsdkA7LD9-HNjX9L-0bf_iGRQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2161064810</pqid></control><display><type>article</type><title>Programmable Locomotion Mechanisms of Nanowires with Semihard Magnetic Properties Near a Surface Boundary</title><source>ACS Publications</source><creator>Jang, Bumjin ; Hong, Ayoung ; Alcantara, Carlos ; Chatzipirpiridis, George ; Martí, Xavier ; Pellicer, Eva ; Sort, Jordi ; Harduf, Yuval ; Or, Yizhar ; Nelson, Bradley J ; Pané, Salvador</creator><creatorcontrib>Jang, Bumjin ; Hong, Ayoung ; Alcantara, Carlos ; Chatzipirpiridis, George ; Martí, Xavier ; Pellicer, Eva ; Sort, Jordi ; Harduf, Yuval ; Or, Yizhar ; Nelson, Bradley J ; Pané, Salvador</creatorcontrib><description>We report on the simplest magnetic nanowire-based surface walker that is able to change its propulsion mechanism near a surface boundary as a function of the applied rotating magnetic field frequency. The nanowires are made of CoPt alloy with semihard magnetic properties synthesized by means of template-assisted galvanostatic electrodeposition. The semihard magnetic behavior of the nanowires allows for programming their alignment with an applied magnetic field as they can retain their magnetization direction after premagnetizing them. By engineering the macroscopic magnetization, the nanowires’ speed and locomotion mechanism are set to tumbling, precession, or rolling depending on the frequency of an applied rotating magnetic field. Also, we present a mathematical analysis that predicts the translational speed of the nanowire near the surface, showing a very good agreement with experimental results. Interestingly, the maximal speed is obtained at an optimal frequency (∼10 Hz), which is far below the theoretical step-out frequency (∼345 Hz). Finally, vortices are found by tracking polystyrene microbeads, trapped around the CoPt nanowire, when they are propelled by precession and rolling motion.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.8b16907</identifier><identifier>PMID: 30588788</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>ACS applied materials &amp; interfaces, 2019-01, Vol.11 (3), p.3214-3223</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a370t-f7ac37e420a5e6a535c618f9b05d35b5b2e98b18907c6ceabe83b11232a0cda3</citedby><cites>FETCH-LOGICAL-a370t-f7ac37e420a5e6a535c618f9b05d35b5b2e98b18907c6ceabe83b11232a0cda3</cites><orcidid>0000-0003-1213-3639 ; 0000-0002-8901-0998 ; 0000-0003-0147-8287</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.8b16907$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.8b16907$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>315,782,786,2769,27085,27933,27934,56747,56797</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30588788$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jang, Bumjin</creatorcontrib><creatorcontrib>Hong, Ayoung</creatorcontrib><creatorcontrib>Alcantara, Carlos</creatorcontrib><creatorcontrib>Chatzipirpiridis, George</creatorcontrib><creatorcontrib>Martí, Xavier</creatorcontrib><creatorcontrib>Pellicer, Eva</creatorcontrib><creatorcontrib>Sort, Jordi</creatorcontrib><creatorcontrib>Harduf, Yuval</creatorcontrib><creatorcontrib>Or, Yizhar</creatorcontrib><creatorcontrib>Nelson, Bradley J</creatorcontrib><creatorcontrib>Pané, Salvador</creatorcontrib><title>Programmable Locomotion Mechanisms of Nanowires with Semihard Magnetic Properties Near a Surface Boundary</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>We report on the simplest magnetic nanowire-based surface walker that is able to change its propulsion mechanism near a surface boundary as a function of the applied rotating magnetic field frequency. The nanowires are made of CoPt alloy with semihard magnetic properties synthesized by means of template-assisted galvanostatic electrodeposition. The semihard magnetic behavior of the nanowires allows for programming their alignment with an applied magnetic field as they can retain their magnetization direction after premagnetizing them. By engineering the macroscopic magnetization, the nanowires’ speed and locomotion mechanism are set to tumbling, precession, or rolling depending on the frequency of an applied rotating magnetic field. Also, we present a mathematical analysis that predicts the translational speed of the nanowire near the surface, showing a very good agreement with experimental results. Interestingly, the maximal speed is obtained at an optimal frequency (∼10 Hz), which is far below the theoretical step-out frequency (∼345 Hz). Finally, vortices are found by tracking polystyrene microbeads, trapped around the CoPt nanowire, when they are propelled by precession and rolling motion.</description><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kD1PwzAQhi0EoqWwMiKPCKnFH3HijlDxJbUFCfbo4lyoUR0XO1HFv8eohY3pbnju1b0PIeecTTgT_BpMBGcnuuL5lBUHZMinWTbWQonDvz3LBuQkxg_GcimYOiYDyZTWhdZDYl-Cfw_gHFRrpHNvvPOd9S1doFlBa6OL1Dd0Ca3f2oCRbm23oq_o7ApCTRfw3mJnDU0xGwydTcQSIVCgr31owCC99X1bQ_g6JUcNrCOe7eeIvN3fvc0ex_Pnh6fZzXwMsmDduCnAyAIzwUBhDkoqk3PdTCumaqkqVQmcprY6tTW5QahQy4pzIQUwU4Mckctd7Cb4zx5jVzobDa7X0KLvYyl4zlmeac4SOtmhJvgYAzblJliXXi05K3_slju75d5uOrjYZ_eVw_oP_9WZgKsdkA7LD9-HNjX9L-0bf_iGRQ</recordid><startdate>20190123</startdate><enddate>20190123</enddate><creator>Jang, Bumjin</creator><creator>Hong, Ayoung</creator><creator>Alcantara, Carlos</creator><creator>Chatzipirpiridis, George</creator><creator>Martí, Xavier</creator><creator>Pellicer, Eva</creator><creator>Sort, Jordi</creator><creator>Harduf, Yuval</creator><creator>Or, Yizhar</creator><creator>Nelson, Bradley J</creator><creator>Pané, Salvador</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1213-3639</orcidid><orcidid>https://orcid.org/0000-0002-8901-0998</orcidid><orcidid>https://orcid.org/0000-0003-0147-8287</orcidid></search><sort><creationdate>20190123</creationdate><title>Programmable Locomotion Mechanisms of Nanowires with Semihard Magnetic Properties Near a Surface Boundary</title><author>Jang, Bumjin ; Hong, Ayoung ; Alcantara, Carlos ; Chatzipirpiridis, George ; Martí, Xavier ; Pellicer, Eva ; Sort, Jordi ; Harduf, Yuval ; Or, Yizhar ; Nelson, Bradley J ; Pané, Salvador</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a370t-f7ac37e420a5e6a535c618f9b05d35b5b2e98b18907c6ceabe83b11232a0cda3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jang, Bumjin</creatorcontrib><creatorcontrib>Hong, Ayoung</creatorcontrib><creatorcontrib>Alcantara, Carlos</creatorcontrib><creatorcontrib>Chatzipirpiridis, George</creatorcontrib><creatorcontrib>Martí, Xavier</creatorcontrib><creatorcontrib>Pellicer, Eva</creatorcontrib><creatorcontrib>Sort, Jordi</creatorcontrib><creatorcontrib>Harduf, Yuval</creatorcontrib><creatorcontrib>Or, Yizhar</creatorcontrib><creatorcontrib>Nelson, Bradley J</creatorcontrib><creatorcontrib>Pané, Salvador</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jang, Bumjin</au><au>Hong, Ayoung</au><au>Alcantara, Carlos</au><au>Chatzipirpiridis, George</au><au>Martí, Xavier</au><au>Pellicer, Eva</au><au>Sort, Jordi</au><au>Harduf, Yuval</au><au>Or, Yizhar</au><au>Nelson, Bradley J</au><au>Pané, Salvador</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Programmable Locomotion Mechanisms of Nanowires with Semihard Magnetic Properties Near a Surface Boundary</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2019-01-23</date><risdate>2019</risdate><volume>11</volume><issue>3</issue><spage>3214</spage><epage>3223</epage><pages>3214-3223</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>We report on the simplest magnetic nanowire-based surface walker that is able to change its propulsion mechanism near a surface boundary as a function of the applied rotating magnetic field frequency. The nanowires are made of CoPt alloy with semihard magnetic properties synthesized by means of template-assisted galvanostatic electrodeposition. The semihard magnetic behavior of the nanowires allows for programming their alignment with an applied magnetic field as they can retain their magnetization direction after premagnetizing them. By engineering the macroscopic magnetization, the nanowires’ speed and locomotion mechanism are set to tumbling, precession, or rolling depending on the frequency of an applied rotating magnetic field. Also, we present a mathematical analysis that predicts the translational speed of the nanowire near the surface, showing a very good agreement with experimental results. Interestingly, the maximal speed is obtained at an optimal frequency (∼10 Hz), which is far below the theoretical step-out frequency (∼345 Hz). Finally, vortices are found by tracking polystyrene microbeads, trapped around the CoPt nanowire, when they are propelled by precession and rolling motion.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>30588788</pmid><doi>10.1021/acsami.8b16907</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-1213-3639</orcidid><orcidid>https://orcid.org/0000-0002-8901-0998</orcidid><orcidid>https://orcid.org/0000-0003-0147-8287</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2019-01, Vol.11 (3), p.3214-3223
issn 1944-8244
1944-8252
language eng
recordid cdi_proquest_miscellaneous_2161064810
source ACS Publications
title Programmable Locomotion Mechanisms of Nanowires with Semihard Magnetic Properties Near a Surface Boundary
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-03T00%3A34%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Programmable%20Locomotion%20Mechanisms%20of%20Nanowires%20with%20Semihard%20Magnetic%20Properties%20Near%20a%20Surface%20Boundary&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Jang,%20Bumjin&rft.date=2019-01-23&rft.volume=11&rft.issue=3&rft.spage=3214&rft.epage=3223&rft.pages=3214-3223&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.8b16907&rft_dat=%3Cproquest_cross%3E2161064810%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2161064810&rft_id=info:pmid/30588788&rfr_iscdi=true