Exploring Tunable Hyperparameters for Deep Neural Networks with Industrial ADME Data Sets
Deep learning has drawn significant attention in different areas including drug discovery. It has been proposed that it could outperform other machine learning algorithms, especially with big data sets. In the field of pharmaceutical industry, machine learning models are built to understand quantita...
Gespeichert in:
Veröffentlicht in: | Journal of chemical information and modeling 2019-03, Vol.59 (3), p.1005-1016 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1016 |
---|---|
container_issue | 3 |
container_start_page | 1005 |
container_title | Journal of chemical information and modeling |
container_volume | 59 |
creator | Zhou, Yadi Cahya, Suntara Combs, Steven A Nicolaou, Christos A Wang, Jibo Desai, Prashant V Shen, Jie |
description | Deep learning has drawn significant attention in different areas including drug discovery. It has been proposed that it could outperform other machine learning algorithms, especially with big data sets. In the field of pharmaceutical industry, machine learning models are built to understand quantitative structure–activity relationships (QSARs) and predict molecular activities, including absorption, distribution, metabolism, and excretion (ADME) properties, using only molecular structures. Previous reports have demonstrated the advantages of using deep neural networks (DNNs) for QSAR modeling. One of the challenges while building DNN models is identifying the hyperparameters that lead to better generalization of the models. In this study, we investigated several tunable hyperparameters of deep neural network models on 24 industrial ADME data sets. We analyzed the sensitivity and influence of five different hyperparameters including the learning rate, weight decay for L2 regularization, dropout rate, activation function, and the use of batch normalization. This paper focuses on strategies and practices for DNN model building. Further, the optimized model for each data set was built and compared with the benchmark models used in production. Based on our benchmarking results, we propose several practices for building DNN QSAR models. |
doi_str_mv | 10.1021/acs.jcim.8b00671 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2161064169</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2216262362</sourcerecordid><originalsourceid>FETCH-LOGICAL-a401t-e85aa1aa8d62676672e43374c8de19eedbed4934cb4db512fe6a05d337cbc83b3</originalsourceid><addsrcrecordid>eNp1kM1LwzAYh4Mobk7vniTgxYOd-Wiz9ji26QZTD07QU0jTt9rZL5OWuf_ezG0eBCHwBvL8fm94EDqnpE8JozdK2_5SZ0U_jAkRA3qAujTwIy8S5OVwfw8i0UEn1i4J4TwS7Bh1OAlCwQnpotfJV51XJivf8KItVZwDnq5rMLUyqoAGjMVpZfAYoMYP0BqVu9GsKvNh8Spr3vGsTFrbmMw9DMf3EzxWjcJP0NhTdJSq3MLZbvbQ8-1kMZp688e72Wg495RPaONBGChFlQoTwcRAiAEDn_OBr8MEaASQxJD4Efd17CdxQFkKQpEgcYiOdchj3kNX297aVJ8t2EYWmdWQ56qEqrWSUUGJ8KmIHHr5B11WrSnd7yRzGBOMu9NDZEtpU1lrIJW1yQpl1pISudEunXa50S532l3kYlfcxgUkv4G9Zwdcb4Gf6H7pv33fe_OOIw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2216262362</pqid></control><display><type>article</type><title>Exploring Tunable Hyperparameters for Deep Neural Networks with Industrial ADME Data Sets</title><source>American Chemical Society</source><source>MEDLINE</source><creator>Zhou, Yadi ; Cahya, Suntara ; Combs, Steven A ; Nicolaou, Christos A ; Wang, Jibo ; Desai, Prashant V ; Shen, Jie</creator><creatorcontrib>Zhou, Yadi ; Cahya, Suntara ; Combs, Steven A ; Nicolaou, Christos A ; Wang, Jibo ; Desai, Prashant V ; Shen, Jie</creatorcontrib><description>Deep learning has drawn significant attention in different areas including drug discovery. It has been proposed that it could outperform other machine learning algorithms, especially with big data sets. In the field of pharmaceutical industry, machine learning models are built to understand quantitative structure–activity relationships (QSARs) and predict molecular activities, including absorption, distribution, metabolism, and excretion (ADME) properties, using only molecular structures. Previous reports have demonstrated the advantages of using deep neural networks (DNNs) for QSAR modeling. One of the challenges while building DNN models is identifying the hyperparameters that lead to better generalization of the models. In this study, we investigated several tunable hyperparameters of deep neural network models on 24 industrial ADME data sets. We analyzed the sensitivity and influence of five different hyperparameters including the learning rate, weight decay for L2 regularization, dropout rate, activation function, and the use of batch normalization. This paper focuses on strategies and practices for DNN model building. Further, the optimized model for each data set was built and compared with the benchmark models used in production. Based on our benchmarking results, we propose several practices for building DNN QSAR models.</description><identifier>ISSN: 1549-9596</identifier><identifier>EISSN: 1549-960X</identifier><identifier>DOI: 10.1021/acs.jcim.8b00671</identifier><identifier>PMID: 30586300</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Absorption, Physicochemical ; Algorithms ; Artificial intelligence ; Artificial neural networks ; Data management ; Datasets ; Decay rate ; Deep Learning ; Drug Discovery - methods ; Excretion ; Machine learning ; Metabolism ; Molecular structure ; Neural networks ; Pharmaceutical Preparations - chemistry ; Pharmaceutical Preparations - metabolism ; Quantitative Structure-Activity Relationship ; Regularization ; Sensitivity analysis</subject><ispartof>Journal of chemical information and modeling, 2019-03, Vol.59 (3), p.1005-1016</ispartof><rights>Copyright American Chemical Society Mar 25, 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a401t-e85aa1aa8d62676672e43374c8de19eedbed4934cb4db512fe6a05d337cbc83b3</citedby><cites>FETCH-LOGICAL-a401t-e85aa1aa8d62676672e43374c8de19eedbed4934cb4db512fe6a05d337cbc83b3</cites><orcidid>0000-0002-1466-6992 ; 0000-0002-2550-0066 ; 0000-0002-6049-0545</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jcim.8b00671$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jcim.8b00671$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30586300$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhou, Yadi</creatorcontrib><creatorcontrib>Cahya, Suntara</creatorcontrib><creatorcontrib>Combs, Steven A</creatorcontrib><creatorcontrib>Nicolaou, Christos A</creatorcontrib><creatorcontrib>Wang, Jibo</creatorcontrib><creatorcontrib>Desai, Prashant V</creatorcontrib><creatorcontrib>Shen, Jie</creatorcontrib><title>Exploring Tunable Hyperparameters for Deep Neural Networks with Industrial ADME Data Sets</title><title>Journal of chemical information and modeling</title><addtitle>J. Chem. Inf. Model</addtitle><description>Deep learning has drawn significant attention in different areas including drug discovery. It has been proposed that it could outperform other machine learning algorithms, especially with big data sets. In the field of pharmaceutical industry, machine learning models are built to understand quantitative structure–activity relationships (QSARs) and predict molecular activities, including absorption, distribution, metabolism, and excretion (ADME) properties, using only molecular structures. Previous reports have demonstrated the advantages of using deep neural networks (DNNs) for QSAR modeling. One of the challenges while building DNN models is identifying the hyperparameters that lead to better generalization of the models. In this study, we investigated several tunable hyperparameters of deep neural network models on 24 industrial ADME data sets. We analyzed the sensitivity and influence of five different hyperparameters including the learning rate, weight decay for L2 regularization, dropout rate, activation function, and the use of batch normalization. This paper focuses on strategies and practices for DNN model building. Further, the optimized model for each data set was built and compared with the benchmark models used in production. Based on our benchmarking results, we propose several practices for building DNN QSAR models.</description><subject>Absorption, Physicochemical</subject><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Artificial neural networks</subject><subject>Data management</subject><subject>Datasets</subject><subject>Decay rate</subject><subject>Deep Learning</subject><subject>Drug Discovery - methods</subject><subject>Excretion</subject><subject>Machine learning</subject><subject>Metabolism</subject><subject>Molecular structure</subject><subject>Neural networks</subject><subject>Pharmaceutical Preparations - chemistry</subject><subject>Pharmaceutical Preparations - metabolism</subject><subject>Quantitative Structure-Activity Relationship</subject><subject>Regularization</subject><subject>Sensitivity analysis</subject><issn>1549-9596</issn><issn>1549-960X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kM1LwzAYh4Mobk7vniTgxYOd-Wiz9ji26QZTD07QU0jTt9rZL5OWuf_ezG0eBCHwBvL8fm94EDqnpE8JozdK2_5SZ0U_jAkRA3qAujTwIy8S5OVwfw8i0UEn1i4J4TwS7Bh1OAlCwQnpotfJV51XJivf8KItVZwDnq5rMLUyqoAGjMVpZfAYoMYP0BqVu9GsKvNh8Spr3vGsTFrbmMw9DMf3EzxWjcJP0NhTdJSq3MLZbvbQ8-1kMZp688e72Wg495RPaONBGChFlQoTwcRAiAEDn_OBr8MEaASQxJD4Efd17CdxQFkKQpEgcYiOdchj3kNX297aVJ8t2EYWmdWQ56qEqrWSUUGJ8KmIHHr5B11WrSnd7yRzGBOMu9NDZEtpU1lrIJW1yQpl1pISudEunXa50S532l3kYlfcxgUkv4G9Zwdcb4Gf6H7pv33fe_OOIw</recordid><startdate>20190325</startdate><enddate>20190325</enddate><creator>Zhou, Yadi</creator><creator>Cahya, Suntara</creator><creator>Combs, Steven A</creator><creator>Nicolaou, Christos A</creator><creator>Wang, Jibo</creator><creator>Desai, Prashant V</creator><creator>Shen, Jie</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1466-6992</orcidid><orcidid>https://orcid.org/0000-0002-2550-0066</orcidid><orcidid>https://orcid.org/0000-0002-6049-0545</orcidid></search><sort><creationdate>20190325</creationdate><title>Exploring Tunable Hyperparameters for Deep Neural Networks with Industrial ADME Data Sets</title><author>Zhou, Yadi ; Cahya, Suntara ; Combs, Steven A ; Nicolaou, Christos A ; Wang, Jibo ; Desai, Prashant V ; Shen, Jie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a401t-e85aa1aa8d62676672e43374c8de19eedbed4934cb4db512fe6a05d337cbc83b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Absorption, Physicochemical</topic><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Artificial neural networks</topic><topic>Data management</topic><topic>Datasets</topic><topic>Decay rate</topic><topic>Deep Learning</topic><topic>Drug Discovery - methods</topic><topic>Excretion</topic><topic>Machine learning</topic><topic>Metabolism</topic><topic>Molecular structure</topic><topic>Neural networks</topic><topic>Pharmaceutical Preparations - chemistry</topic><topic>Pharmaceutical Preparations - metabolism</topic><topic>Quantitative Structure-Activity Relationship</topic><topic>Regularization</topic><topic>Sensitivity analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Yadi</creatorcontrib><creatorcontrib>Cahya, Suntara</creatorcontrib><creatorcontrib>Combs, Steven A</creatorcontrib><creatorcontrib>Nicolaou, Christos A</creatorcontrib><creatorcontrib>Wang, Jibo</creatorcontrib><creatorcontrib>Desai, Prashant V</creatorcontrib><creatorcontrib>Shen, Jie</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of chemical information and modeling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Yadi</au><au>Cahya, Suntara</au><au>Combs, Steven A</au><au>Nicolaou, Christos A</au><au>Wang, Jibo</au><au>Desai, Prashant V</au><au>Shen, Jie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exploring Tunable Hyperparameters for Deep Neural Networks with Industrial ADME Data Sets</atitle><jtitle>Journal of chemical information and modeling</jtitle><addtitle>J. Chem. Inf. Model</addtitle><date>2019-03-25</date><risdate>2019</risdate><volume>59</volume><issue>3</issue><spage>1005</spage><epage>1016</epage><pages>1005-1016</pages><issn>1549-9596</issn><eissn>1549-960X</eissn><abstract>Deep learning has drawn significant attention in different areas including drug discovery. It has been proposed that it could outperform other machine learning algorithms, especially with big data sets. In the field of pharmaceutical industry, machine learning models are built to understand quantitative structure–activity relationships (QSARs) and predict molecular activities, including absorption, distribution, metabolism, and excretion (ADME) properties, using only molecular structures. Previous reports have demonstrated the advantages of using deep neural networks (DNNs) for QSAR modeling. One of the challenges while building DNN models is identifying the hyperparameters that lead to better generalization of the models. In this study, we investigated several tunable hyperparameters of deep neural network models on 24 industrial ADME data sets. We analyzed the sensitivity and influence of five different hyperparameters including the learning rate, weight decay for L2 regularization, dropout rate, activation function, and the use of batch normalization. This paper focuses on strategies and practices for DNN model building. Further, the optimized model for each data set was built and compared with the benchmark models used in production. Based on our benchmarking results, we propose several practices for building DNN QSAR models.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>30586300</pmid><doi>10.1021/acs.jcim.8b00671</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-1466-6992</orcidid><orcidid>https://orcid.org/0000-0002-2550-0066</orcidid><orcidid>https://orcid.org/0000-0002-6049-0545</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1549-9596 |
ispartof | Journal of chemical information and modeling, 2019-03, Vol.59 (3), p.1005-1016 |
issn | 1549-9596 1549-960X |
language | eng |
recordid | cdi_proquest_miscellaneous_2161064169 |
source | American Chemical Society; MEDLINE |
subjects | Absorption, Physicochemical Algorithms Artificial intelligence Artificial neural networks Data management Datasets Decay rate Deep Learning Drug Discovery - methods Excretion Machine learning Metabolism Molecular structure Neural networks Pharmaceutical Preparations - chemistry Pharmaceutical Preparations - metabolism Quantitative Structure-Activity Relationship Regularization Sensitivity analysis |
title | Exploring Tunable Hyperparameters for Deep Neural Networks with Industrial ADME Data Sets |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T20%3A36%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exploring%20Tunable%20Hyperparameters%20for%20Deep%20Neural%20Networks%20with%20Industrial%20ADME%20Data%20Sets&rft.jtitle=Journal%20of%20chemical%20information%20and%20modeling&rft.au=Zhou,%20Yadi&rft.date=2019-03-25&rft.volume=59&rft.issue=3&rft.spage=1005&rft.epage=1016&rft.pages=1005-1016&rft.issn=1549-9596&rft.eissn=1549-960X&rft_id=info:doi/10.1021/acs.jcim.8b00671&rft_dat=%3Cproquest_cross%3E2216262362%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2216262362&rft_id=info:pmid/30586300&rfr_iscdi=true |