Exploring Tunable Hyperparameters for Deep Neural Networks with Industrial ADME Data Sets

Deep learning has drawn significant attention in different areas including drug discovery. It has been proposed that it could outperform other machine learning algorithms, especially with big data sets. In the field of pharmaceutical industry, machine learning models are built to understand quantita...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of chemical information and modeling 2019-03, Vol.59 (3), p.1005-1016
Hauptverfasser: Zhou, Yadi, Cahya, Suntara, Combs, Steven A, Nicolaou, Christos A, Wang, Jibo, Desai, Prashant V, Shen, Jie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1016
container_issue 3
container_start_page 1005
container_title Journal of chemical information and modeling
container_volume 59
creator Zhou, Yadi
Cahya, Suntara
Combs, Steven A
Nicolaou, Christos A
Wang, Jibo
Desai, Prashant V
Shen, Jie
description Deep learning has drawn significant attention in different areas including drug discovery. It has been proposed that it could outperform other machine learning algorithms, especially with big data sets. In the field of pharmaceutical industry, machine learning models are built to understand quantitative structure–activity relationships (QSARs) and predict molecular activities, including absorption, distribution, metabolism, and excretion (ADME) properties, using only molecular structures. Previous reports have demonstrated the advantages of using deep neural networks (DNNs) for QSAR modeling. One of the challenges while building DNN models is identifying the hyperparameters that lead to better generalization of the models. In this study, we investigated several tunable hyperparameters of deep neural network models on 24 industrial ADME data sets. We analyzed the sensitivity and influence of five different hyperparameters including the learning rate, weight decay for L2 regularization, dropout rate, activation function, and the use of batch normalization. This paper focuses on strategies and practices for DNN model building. Further, the optimized model for each data set was built and compared with the benchmark models used in production. Based on our benchmarking results, we propose several practices for building DNN QSAR models.
doi_str_mv 10.1021/acs.jcim.8b00671
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2161064169</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2216262362</sourcerecordid><originalsourceid>FETCH-LOGICAL-a401t-e85aa1aa8d62676672e43374c8de19eedbed4934cb4db512fe6a05d337cbc83b3</originalsourceid><addsrcrecordid>eNp1kM1LwzAYh4Mobk7vniTgxYOd-Wiz9ji26QZTD07QU0jTt9rZL5OWuf_ezG0eBCHwBvL8fm94EDqnpE8JozdK2_5SZ0U_jAkRA3qAujTwIy8S5OVwfw8i0UEn1i4J4TwS7Bh1OAlCwQnpotfJV51XJivf8KItVZwDnq5rMLUyqoAGjMVpZfAYoMYP0BqVu9GsKvNh8Spr3vGsTFrbmMw9DMf3EzxWjcJP0NhTdJSq3MLZbvbQ8-1kMZp688e72Wg495RPaONBGChFlQoTwcRAiAEDn_OBr8MEaASQxJD4Efd17CdxQFkKQpEgcYiOdchj3kNX297aVJ8t2EYWmdWQ56qEqrWSUUGJ8KmIHHr5B11WrSnd7yRzGBOMu9NDZEtpU1lrIJW1yQpl1pISudEunXa50S532l3kYlfcxgUkv4G9Zwdcb4Gf6H7pv33fe_OOIw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2216262362</pqid></control><display><type>article</type><title>Exploring Tunable Hyperparameters for Deep Neural Networks with Industrial ADME Data Sets</title><source>American Chemical Society</source><source>MEDLINE</source><creator>Zhou, Yadi ; Cahya, Suntara ; Combs, Steven A ; Nicolaou, Christos A ; Wang, Jibo ; Desai, Prashant V ; Shen, Jie</creator><creatorcontrib>Zhou, Yadi ; Cahya, Suntara ; Combs, Steven A ; Nicolaou, Christos A ; Wang, Jibo ; Desai, Prashant V ; Shen, Jie</creatorcontrib><description>Deep learning has drawn significant attention in different areas including drug discovery. It has been proposed that it could outperform other machine learning algorithms, especially with big data sets. In the field of pharmaceutical industry, machine learning models are built to understand quantitative structure–activity relationships (QSARs) and predict molecular activities, including absorption, distribution, metabolism, and excretion (ADME) properties, using only molecular structures. Previous reports have demonstrated the advantages of using deep neural networks (DNNs) for QSAR modeling. One of the challenges while building DNN models is identifying the hyperparameters that lead to better generalization of the models. In this study, we investigated several tunable hyperparameters of deep neural network models on 24 industrial ADME data sets. We analyzed the sensitivity and influence of five different hyperparameters including the learning rate, weight decay for L2 regularization, dropout rate, activation function, and the use of batch normalization. This paper focuses on strategies and practices for DNN model building. Further, the optimized model for each data set was built and compared with the benchmark models used in production. Based on our benchmarking results, we propose several practices for building DNN QSAR models.</description><identifier>ISSN: 1549-9596</identifier><identifier>EISSN: 1549-960X</identifier><identifier>DOI: 10.1021/acs.jcim.8b00671</identifier><identifier>PMID: 30586300</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Absorption, Physicochemical ; Algorithms ; Artificial intelligence ; Artificial neural networks ; Data management ; Datasets ; Decay rate ; Deep Learning ; Drug Discovery - methods ; Excretion ; Machine learning ; Metabolism ; Molecular structure ; Neural networks ; Pharmaceutical Preparations - chemistry ; Pharmaceutical Preparations - metabolism ; Quantitative Structure-Activity Relationship ; Regularization ; Sensitivity analysis</subject><ispartof>Journal of chemical information and modeling, 2019-03, Vol.59 (3), p.1005-1016</ispartof><rights>Copyright American Chemical Society Mar 25, 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a401t-e85aa1aa8d62676672e43374c8de19eedbed4934cb4db512fe6a05d337cbc83b3</citedby><cites>FETCH-LOGICAL-a401t-e85aa1aa8d62676672e43374c8de19eedbed4934cb4db512fe6a05d337cbc83b3</cites><orcidid>0000-0002-1466-6992 ; 0000-0002-2550-0066 ; 0000-0002-6049-0545</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jcim.8b00671$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jcim.8b00671$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30586300$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhou, Yadi</creatorcontrib><creatorcontrib>Cahya, Suntara</creatorcontrib><creatorcontrib>Combs, Steven A</creatorcontrib><creatorcontrib>Nicolaou, Christos A</creatorcontrib><creatorcontrib>Wang, Jibo</creatorcontrib><creatorcontrib>Desai, Prashant V</creatorcontrib><creatorcontrib>Shen, Jie</creatorcontrib><title>Exploring Tunable Hyperparameters for Deep Neural Networks with Industrial ADME Data Sets</title><title>Journal of chemical information and modeling</title><addtitle>J. Chem. Inf. Model</addtitle><description>Deep learning has drawn significant attention in different areas including drug discovery. It has been proposed that it could outperform other machine learning algorithms, especially with big data sets. In the field of pharmaceutical industry, machine learning models are built to understand quantitative structure–activity relationships (QSARs) and predict molecular activities, including absorption, distribution, metabolism, and excretion (ADME) properties, using only molecular structures. Previous reports have demonstrated the advantages of using deep neural networks (DNNs) for QSAR modeling. One of the challenges while building DNN models is identifying the hyperparameters that lead to better generalization of the models. In this study, we investigated several tunable hyperparameters of deep neural network models on 24 industrial ADME data sets. We analyzed the sensitivity and influence of five different hyperparameters including the learning rate, weight decay for L2 regularization, dropout rate, activation function, and the use of batch normalization. This paper focuses on strategies and practices for DNN model building. Further, the optimized model for each data set was built and compared with the benchmark models used in production. Based on our benchmarking results, we propose several practices for building DNN QSAR models.</description><subject>Absorption, Physicochemical</subject><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Artificial neural networks</subject><subject>Data management</subject><subject>Datasets</subject><subject>Decay rate</subject><subject>Deep Learning</subject><subject>Drug Discovery - methods</subject><subject>Excretion</subject><subject>Machine learning</subject><subject>Metabolism</subject><subject>Molecular structure</subject><subject>Neural networks</subject><subject>Pharmaceutical Preparations - chemistry</subject><subject>Pharmaceutical Preparations - metabolism</subject><subject>Quantitative Structure-Activity Relationship</subject><subject>Regularization</subject><subject>Sensitivity analysis</subject><issn>1549-9596</issn><issn>1549-960X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kM1LwzAYh4Mobk7vniTgxYOd-Wiz9ji26QZTD07QU0jTt9rZL5OWuf_ezG0eBCHwBvL8fm94EDqnpE8JozdK2_5SZ0U_jAkRA3qAujTwIy8S5OVwfw8i0UEn1i4J4TwS7Bh1OAlCwQnpotfJV51XJivf8KItVZwDnq5rMLUyqoAGjMVpZfAYoMYP0BqVu9GsKvNh8Spr3vGsTFrbmMw9DMf3EzxWjcJP0NhTdJSq3MLZbvbQ8-1kMZp688e72Wg495RPaONBGChFlQoTwcRAiAEDn_OBr8MEaASQxJD4Efd17CdxQFkKQpEgcYiOdchj3kNX297aVJ8t2EYWmdWQ56qEqrWSUUGJ8KmIHHr5B11WrSnd7yRzGBOMu9NDZEtpU1lrIJW1yQpl1pISudEunXa50S532l3kYlfcxgUkv4G9Zwdcb4Gf6H7pv33fe_OOIw</recordid><startdate>20190325</startdate><enddate>20190325</enddate><creator>Zhou, Yadi</creator><creator>Cahya, Suntara</creator><creator>Combs, Steven A</creator><creator>Nicolaou, Christos A</creator><creator>Wang, Jibo</creator><creator>Desai, Prashant V</creator><creator>Shen, Jie</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1466-6992</orcidid><orcidid>https://orcid.org/0000-0002-2550-0066</orcidid><orcidid>https://orcid.org/0000-0002-6049-0545</orcidid></search><sort><creationdate>20190325</creationdate><title>Exploring Tunable Hyperparameters for Deep Neural Networks with Industrial ADME Data Sets</title><author>Zhou, Yadi ; Cahya, Suntara ; Combs, Steven A ; Nicolaou, Christos A ; Wang, Jibo ; Desai, Prashant V ; Shen, Jie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a401t-e85aa1aa8d62676672e43374c8de19eedbed4934cb4db512fe6a05d337cbc83b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Absorption, Physicochemical</topic><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Artificial neural networks</topic><topic>Data management</topic><topic>Datasets</topic><topic>Decay rate</topic><topic>Deep Learning</topic><topic>Drug Discovery - methods</topic><topic>Excretion</topic><topic>Machine learning</topic><topic>Metabolism</topic><topic>Molecular structure</topic><topic>Neural networks</topic><topic>Pharmaceutical Preparations - chemistry</topic><topic>Pharmaceutical Preparations - metabolism</topic><topic>Quantitative Structure-Activity Relationship</topic><topic>Regularization</topic><topic>Sensitivity analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Yadi</creatorcontrib><creatorcontrib>Cahya, Suntara</creatorcontrib><creatorcontrib>Combs, Steven A</creatorcontrib><creatorcontrib>Nicolaou, Christos A</creatorcontrib><creatorcontrib>Wang, Jibo</creatorcontrib><creatorcontrib>Desai, Prashant V</creatorcontrib><creatorcontrib>Shen, Jie</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of chemical information and modeling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Yadi</au><au>Cahya, Suntara</au><au>Combs, Steven A</au><au>Nicolaou, Christos A</au><au>Wang, Jibo</au><au>Desai, Prashant V</au><au>Shen, Jie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exploring Tunable Hyperparameters for Deep Neural Networks with Industrial ADME Data Sets</atitle><jtitle>Journal of chemical information and modeling</jtitle><addtitle>J. Chem. Inf. Model</addtitle><date>2019-03-25</date><risdate>2019</risdate><volume>59</volume><issue>3</issue><spage>1005</spage><epage>1016</epage><pages>1005-1016</pages><issn>1549-9596</issn><eissn>1549-960X</eissn><abstract>Deep learning has drawn significant attention in different areas including drug discovery. It has been proposed that it could outperform other machine learning algorithms, especially with big data sets. In the field of pharmaceutical industry, machine learning models are built to understand quantitative structure–activity relationships (QSARs) and predict molecular activities, including absorption, distribution, metabolism, and excretion (ADME) properties, using only molecular structures. Previous reports have demonstrated the advantages of using deep neural networks (DNNs) for QSAR modeling. One of the challenges while building DNN models is identifying the hyperparameters that lead to better generalization of the models. In this study, we investigated several tunable hyperparameters of deep neural network models on 24 industrial ADME data sets. We analyzed the sensitivity and influence of five different hyperparameters including the learning rate, weight decay for L2 regularization, dropout rate, activation function, and the use of batch normalization. This paper focuses on strategies and practices for DNN model building. Further, the optimized model for each data set was built and compared with the benchmark models used in production. Based on our benchmarking results, we propose several practices for building DNN QSAR models.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>30586300</pmid><doi>10.1021/acs.jcim.8b00671</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-1466-6992</orcidid><orcidid>https://orcid.org/0000-0002-2550-0066</orcidid><orcidid>https://orcid.org/0000-0002-6049-0545</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1549-9596
ispartof Journal of chemical information and modeling, 2019-03, Vol.59 (3), p.1005-1016
issn 1549-9596
1549-960X
language eng
recordid cdi_proquest_miscellaneous_2161064169
source American Chemical Society; MEDLINE
subjects Absorption, Physicochemical
Algorithms
Artificial intelligence
Artificial neural networks
Data management
Datasets
Decay rate
Deep Learning
Drug Discovery - methods
Excretion
Machine learning
Metabolism
Molecular structure
Neural networks
Pharmaceutical Preparations - chemistry
Pharmaceutical Preparations - metabolism
Quantitative Structure-Activity Relationship
Regularization
Sensitivity analysis
title Exploring Tunable Hyperparameters for Deep Neural Networks with Industrial ADME Data Sets
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T20%3A36%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exploring%20Tunable%20Hyperparameters%20for%20Deep%20Neural%20Networks%20with%20Industrial%20ADME%20Data%20Sets&rft.jtitle=Journal%20of%20chemical%20information%20and%20modeling&rft.au=Zhou,%20Yadi&rft.date=2019-03-25&rft.volume=59&rft.issue=3&rft.spage=1005&rft.epage=1016&rft.pages=1005-1016&rft.issn=1549-9596&rft.eissn=1549-960X&rft_id=info:doi/10.1021/acs.jcim.8b00671&rft_dat=%3Cproquest_cross%3E2216262362%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2216262362&rft_id=info:pmid/30586300&rfr_iscdi=true