Suitability of Solanum lycopersicum L. ‘Microtom’ for growth in Bioregenerative Life Support Systems: exploring the effect of high‐LET ionising radiation on photosynthesis, leaf structure and fruit traits
The realisation of manned space exploration requires the development of Bioregenerative Life Support Systems (BLSS). In such self‐sufficient closed habitats, higher plants have a fundamental role in air regeneration, water recovery, food production and waste recycling. In the space environment, ioni...
Gespeichert in:
Veröffentlicht in: | Plant biology (Stuttgart, Germany) Germany), 2019-07, Vol.21 (4), p.615-626 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 626 |
---|---|
container_issue | 4 |
container_start_page | 615 |
container_title | Plant biology (Stuttgart, Germany) |
container_volume | 21 |
creator | Arena, C. Vitale, E. Hay Mele, B. Cataletto, P. R. Turano, M. Simoniello, P. De Micco, V. Leegood, R. |
description | The realisation of manned space exploration requires the development of Bioregenerative Life Support Systems (BLSS). In such self‐sufficient closed habitats, higher plants have a fundamental role in air regeneration, water recovery, food production and waste recycling. In the space environment, ionising radiation represents one of the main constraints to plant growth.
In this study, we explore whether low doses of heavy ions, namely Ca 25 Gy, delivered at the seed stage, may induce positive outcomes on growth and functional traits in plants of Solanum lycopersicum L. ‘Microtom’. After irradiation of seed, plant growth was monitored during the whole plant life cycle, from germination to fruit ripening. Morphological parameters, photosynthetic efficiency, leaf anatomical functional traits and antioxidant production in leaves and fruits were analysed.
Our data demonstrate that irradiation of seeds with 25 Gy Ca ions does not prevent achievement of the seed‐to‐seed cycle in ‘Microtom’, and induces a more compact plant size compared to the control. Plants germinated from irradiated seeds show better photochemical efficiency than controls, likely due to the higher amount of D1 protein and photosynthetic pigment content. Leaves of these plants also had smaller cells with a lower number of chloroplasts. The dose of 25 Gy Ca ions is also responsible for positive outcomes in fruits: although developing a lower number of berries, plants germinated from irradiated seeds produce larger berries, richer in carotenoids, ascorbic acid and anthocyanins than controls.
These specific traits may be useful for ‘Microtom’ cultivation in BLSS in space, in so far as the crew members could benefit from fresh food richer in functional compounds that can be directly produced on board. |
doi_str_mv | 10.1111/plb.12952 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2160731340</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2235862080</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3302-ba29a0b9ee10b6d105742784633721924f86166b71a9e1f9208fecc1f41e23d13</originalsourceid><addsrcrecordid>eNp1kctu1DAUhiMEEqWw4A2OxAYkZupLJhd2tCoFKQikKevIyRxPTuXEwXZasptHYFlei0eYJ8HTYYWEZcnH0nf-c_mT5CVnSx7P2WiaJRflSjxKTngqi0WR5fnjh3gVYyafJs-8v2GMpyXjJ8nv9URBNWQozGA1rK1Rw9SDmVs7ovPUxk-1hP3u_jO1zgbb73e_QFsHW2fvQgc0wDlZh1sc0KlAtwgVaYT1NI7WBVjPPmDv3wH-GI11NGwhdAioNbbhULKjbbff_awur4HsQP5AOLWhqGUHiHfsYlk_DzHNk38LBpUGH9zUhskhqGED2sUxIDhFwT9PnmhlPL74-54m3z5cXl98XFRfrj5dvK8WrZRMLBolSsWaEpGzJttwtspTkRdpJmUueClSXWQ8y5qcqxK5LgUrYsct1ylHITdcniavj7qjs98n9KHuybdo4gLRTr4WPGO55DJlEX31D3pjJzfE7moh5KrIoviBenOk4p69d6jr0VGv3FxzVh_craO79YO7kT07sndkcP4_WH-tzo8ZfwDfO60Y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2235862080</pqid></control><display><type>article</type><title>Suitability of Solanum lycopersicum L. ‘Microtom’ for growth in Bioregenerative Life Support Systems: exploring the effect of high‐LET ionising radiation on photosynthesis, leaf structure and fruit traits</title><source>Wiley Online Library - AutoHoldings Journals</source><creator>Arena, C. ; Vitale, E. ; Hay Mele, B. ; Cataletto, P. R. ; Turano, M. ; Simoniello, P. ; De Micco, V. ; Leegood, R.</creator><creatorcontrib>Arena, C. ; Vitale, E. ; Hay Mele, B. ; Cataletto, P. R. ; Turano, M. ; Simoniello, P. ; De Micco, V. ; Leegood, R.</creatorcontrib><description>The realisation of manned space exploration requires the development of Bioregenerative Life Support Systems (BLSS). In such self‐sufficient closed habitats, higher plants have a fundamental role in air regeneration, water recovery, food production and waste recycling. In the space environment, ionising radiation represents one of the main constraints to plant growth.
In this study, we explore whether low doses of heavy ions, namely Ca 25 Gy, delivered at the seed stage, may induce positive outcomes on growth and functional traits in plants of Solanum lycopersicum L. ‘Microtom’. After irradiation of seed, plant growth was monitored during the whole plant life cycle, from germination to fruit ripening. Morphological parameters, photosynthetic efficiency, leaf anatomical functional traits and antioxidant production in leaves and fruits were analysed.
Our data demonstrate that irradiation of seeds with 25 Gy Ca ions does not prevent achievement of the seed‐to‐seed cycle in ‘Microtom’, and induces a more compact plant size compared to the control. Plants germinated from irradiated seeds show better photochemical efficiency than controls, likely due to the higher amount of D1 protein and photosynthetic pigment content. Leaves of these plants also had smaller cells with a lower number of chloroplasts. The dose of 25 Gy Ca ions is also responsible for positive outcomes in fruits: although developing a lower number of berries, plants germinated from irradiated seeds produce larger berries, richer in carotenoids, ascorbic acid and anthocyanins than controls.
These specific traits may be useful for ‘Microtom’ cultivation in BLSS in space, in so far as the crew members could benefit from fresh food richer in functional compounds that can be directly produced on board.</description><identifier>ISSN: 1435-8603</identifier><identifier>EISSN: 1438-8677</identifier><identifier>DOI: 10.1111/plb.12952</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Aerospace environments ; Anthocyanins ; Antioxidants ; Ascorbic acid ; Berries ; Calcium ions ; Carotenoids ; Chloroplasts ; Cultivation ; D1 protein ; Food ; Food production ; Fruits ; Germination ; Habitability ; Heavy ions ; Ionizing radiation ; Ions ; Irradiation ; leaf anatomy ; Leaves ; Life cycles ; Life support systems ; Manned space flight ; Photochemicals ; Photosynthesis ; Plant growth ; Recovering ; Regeneration ; Ripening ; Seeds ; Solanum lycopersicum ; space ecosystem ; Space exploration ; tomato fruits</subject><ispartof>Plant biology (Stuttgart, Germany), 2019-07, Vol.21 (4), p.615-626</ispartof><rights>2018 German Society for Plant Sciences and The Royal Botanical Society of the Netherlands</rights><rights>2019 German Society for Plant Sciences and The Royal Botanical Society of the Netherlands</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3302-ba29a0b9ee10b6d105742784633721924f86166b71a9e1f9208fecc1f41e23d13</citedby><cites>FETCH-LOGICAL-c3302-ba29a0b9ee10b6d105742784633721924f86166b71a9e1f9208fecc1f41e23d13</cites><orcidid>0000-0002-4282-9525 ; 0000-0002-9718-2941</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fplb.12952$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fplb.12952$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Arena, C.</creatorcontrib><creatorcontrib>Vitale, E.</creatorcontrib><creatorcontrib>Hay Mele, B.</creatorcontrib><creatorcontrib>Cataletto, P. R.</creatorcontrib><creatorcontrib>Turano, M.</creatorcontrib><creatorcontrib>Simoniello, P.</creatorcontrib><creatorcontrib>De Micco, V.</creatorcontrib><creatorcontrib>Leegood, R.</creatorcontrib><title>Suitability of Solanum lycopersicum L. ‘Microtom’ for growth in Bioregenerative Life Support Systems: exploring the effect of high‐LET ionising radiation on photosynthesis, leaf structure and fruit traits</title><title>Plant biology (Stuttgart, Germany)</title><description>The realisation of manned space exploration requires the development of Bioregenerative Life Support Systems (BLSS). In such self‐sufficient closed habitats, higher plants have a fundamental role in air regeneration, water recovery, food production and waste recycling. In the space environment, ionising radiation represents one of the main constraints to plant growth.
In this study, we explore whether low doses of heavy ions, namely Ca 25 Gy, delivered at the seed stage, may induce positive outcomes on growth and functional traits in plants of Solanum lycopersicum L. ‘Microtom’. After irradiation of seed, plant growth was monitored during the whole plant life cycle, from germination to fruit ripening. Morphological parameters, photosynthetic efficiency, leaf anatomical functional traits and antioxidant production in leaves and fruits were analysed.
Our data demonstrate that irradiation of seeds with 25 Gy Ca ions does not prevent achievement of the seed‐to‐seed cycle in ‘Microtom’, and induces a more compact plant size compared to the control. Plants germinated from irradiated seeds show better photochemical efficiency than controls, likely due to the higher amount of D1 protein and photosynthetic pigment content. Leaves of these plants also had smaller cells with a lower number of chloroplasts. The dose of 25 Gy Ca ions is also responsible for positive outcomes in fruits: although developing a lower number of berries, plants germinated from irradiated seeds produce larger berries, richer in carotenoids, ascorbic acid and anthocyanins than controls.
These specific traits may be useful for ‘Microtom’ cultivation in BLSS in space, in so far as the crew members could benefit from fresh food richer in functional compounds that can be directly produced on board.</description><subject>Aerospace environments</subject><subject>Anthocyanins</subject><subject>Antioxidants</subject><subject>Ascorbic acid</subject><subject>Berries</subject><subject>Calcium ions</subject><subject>Carotenoids</subject><subject>Chloroplasts</subject><subject>Cultivation</subject><subject>D1 protein</subject><subject>Food</subject><subject>Food production</subject><subject>Fruits</subject><subject>Germination</subject><subject>Habitability</subject><subject>Heavy ions</subject><subject>Ionizing radiation</subject><subject>Ions</subject><subject>Irradiation</subject><subject>leaf anatomy</subject><subject>Leaves</subject><subject>Life cycles</subject><subject>Life support systems</subject><subject>Manned space flight</subject><subject>Photochemicals</subject><subject>Photosynthesis</subject><subject>Plant growth</subject><subject>Recovering</subject><subject>Regeneration</subject><subject>Ripening</subject><subject>Seeds</subject><subject>Solanum lycopersicum</subject><subject>space ecosystem</subject><subject>Space exploration</subject><subject>tomato fruits</subject><issn>1435-8603</issn><issn>1438-8677</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kctu1DAUhiMEEqWw4A2OxAYkZupLJhd2tCoFKQikKevIyRxPTuXEwXZasptHYFlei0eYJ8HTYYWEZcnH0nf-c_mT5CVnSx7P2WiaJRflSjxKTngqi0WR5fnjh3gVYyafJs-8v2GMpyXjJ8nv9URBNWQozGA1rK1Rw9SDmVs7ovPUxk-1hP3u_jO1zgbb73e_QFsHW2fvQgc0wDlZh1sc0KlAtwgVaYT1NI7WBVjPPmDv3wH-GI11NGwhdAioNbbhULKjbbff_awur4HsQP5AOLWhqGUHiHfsYlk_DzHNk38LBpUGH9zUhskhqGED2sUxIDhFwT9PnmhlPL74-54m3z5cXl98XFRfrj5dvK8WrZRMLBolSsWaEpGzJttwtspTkRdpJmUueClSXWQ8y5qcqxK5LgUrYsct1ylHITdcniavj7qjs98n9KHuybdo4gLRTr4WPGO55DJlEX31D3pjJzfE7moh5KrIoviBenOk4p69d6jr0VGv3FxzVh_craO79YO7kT07sndkcP4_WH-tzo8ZfwDfO60Y</recordid><startdate>201907</startdate><enddate>201907</enddate><creator>Arena, C.</creator><creator>Vitale, E.</creator><creator>Hay Mele, B.</creator><creator>Cataletto, P. R.</creator><creator>Turano, M.</creator><creator>Simoniello, P.</creator><creator>De Micco, V.</creator><creator>Leegood, R.</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4282-9525</orcidid><orcidid>https://orcid.org/0000-0002-9718-2941</orcidid></search><sort><creationdate>201907</creationdate><title>Suitability of Solanum lycopersicum L. ‘Microtom’ for growth in Bioregenerative Life Support Systems: exploring the effect of high‐LET ionising radiation on photosynthesis, leaf structure and fruit traits</title><author>Arena, C. ; Vitale, E. ; Hay Mele, B. ; Cataletto, P. R. ; Turano, M. ; Simoniello, P. ; De Micco, V. ; Leegood, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3302-ba29a0b9ee10b6d105742784633721924f86166b71a9e1f9208fecc1f41e23d13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Aerospace environments</topic><topic>Anthocyanins</topic><topic>Antioxidants</topic><topic>Ascorbic acid</topic><topic>Berries</topic><topic>Calcium ions</topic><topic>Carotenoids</topic><topic>Chloroplasts</topic><topic>Cultivation</topic><topic>D1 protein</topic><topic>Food</topic><topic>Food production</topic><topic>Fruits</topic><topic>Germination</topic><topic>Habitability</topic><topic>Heavy ions</topic><topic>Ionizing radiation</topic><topic>Ions</topic><topic>Irradiation</topic><topic>leaf anatomy</topic><topic>Leaves</topic><topic>Life cycles</topic><topic>Life support systems</topic><topic>Manned space flight</topic><topic>Photochemicals</topic><topic>Photosynthesis</topic><topic>Plant growth</topic><topic>Recovering</topic><topic>Regeneration</topic><topic>Ripening</topic><topic>Seeds</topic><topic>Solanum lycopersicum</topic><topic>space ecosystem</topic><topic>Space exploration</topic><topic>tomato fruits</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Arena, C.</creatorcontrib><creatorcontrib>Vitale, E.</creatorcontrib><creatorcontrib>Hay Mele, B.</creatorcontrib><creatorcontrib>Cataletto, P. R.</creatorcontrib><creatorcontrib>Turano, M.</creatorcontrib><creatorcontrib>Simoniello, P.</creatorcontrib><creatorcontrib>De Micco, V.</creatorcontrib><creatorcontrib>Leegood, R.</creatorcontrib><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Plant biology (Stuttgart, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Arena, C.</au><au>Vitale, E.</au><au>Hay Mele, B.</au><au>Cataletto, P. R.</au><au>Turano, M.</au><au>Simoniello, P.</au><au>De Micco, V.</au><au>Leegood, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Suitability of Solanum lycopersicum L. ‘Microtom’ for growth in Bioregenerative Life Support Systems: exploring the effect of high‐LET ionising radiation on photosynthesis, leaf structure and fruit traits</atitle><jtitle>Plant biology (Stuttgart, Germany)</jtitle><date>2019-07</date><risdate>2019</risdate><volume>21</volume><issue>4</issue><spage>615</spage><epage>626</epage><pages>615-626</pages><issn>1435-8603</issn><eissn>1438-8677</eissn><abstract>The realisation of manned space exploration requires the development of Bioregenerative Life Support Systems (BLSS). In such self‐sufficient closed habitats, higher plants have a fundamental role in air regeneration, water recovery, food production and waste recycling. In the space environment, ionising radiation represents one of the main constraints to plant growth.
In this study, we explore whether low doses of heavy ions, namely Ca 25 Gy, delivered at the seed stage, may induce positive outcomes on growth and functional traits in plants of Solanum lycopersicum L. ‘Microtom’. After irradiation of seed, plant growth was monitored during the whole plant life cycle, from germination to fruit ripening. Morphological parameters, photosynthetic efficiency, leaf anatomical functional traits and antioxidant production in leaves and fruits were analysed.
Our data demonstrate that irradiation of seeds with 25 Gy Ca ions does not prevent achievement of the seed‐to‐seed cycle in ‘Microtom’, and induces a more compact plant size compared to the control. Plants germinated from irradiated seeds show better photochemical efficiency than controls, likely due to the higher amount of D1 protein and photosynthetic pigment content. Leaves of these plants also had smaller cells with a lower number of chloroplasts. The dose of 25 Gy Ca ions is also responsible for positive outcomes in fruits: although developing a lower number of berries, plants germinated from irradiated seeds produce larger berries, richer in carotenoids, ascorbic acid and anthocyanins than controls.
These specific traits may be useful for ‘Microtom’ cultivation in BLSS in space, in so far as the crew members could benefit from fresh food richer in functional compounds that can be directly produced on board.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1111/plb.12952</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-4282-9525</orcidid><orcidid>https://orcid.org/0000-0002-9718-2941</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1435-8603 |
ispartof | Plant biology (Stuttgart, Germany), 2019-07, Vol.21 (4), p.615-626 |
issn | 1435-8603 1438-8677 |
language | eng |
recordid | cdi_proquest_miscellaneous_2160731340 |
source | Wiley Online Library - AutoHoldings Journals |
subjects | Aerospace environments Anthocyanins Antioxidants Ascorbic acid Berries Calcium ions Carotenoids Chloroplasts Cultivation D1 protein Food Food production Fruits Germination Habitability Heavy ions Ionizing radiation Ions Irradiation leaf anatomy Leaves Life cycles Life support systems Manned space flight Photochemicals Photosynthesis Plant growth Recovering Regeneration Ripening Seeds Solanum lycopersicum space ecosystem Space exploration tomato fruits |
title | Suitability of Solanum lycopersicum L. ‘Microtom’ for growth in Bioregenerative Life Support Systems: exploring the effect of high‐LET ionising radiation on photosynthesis, leaf structure and fruit traits |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T18%3A10%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Suitability%20of%20Solanum%20lycopersicum%20L.%20%E2%80%98Microtom%E2%80%99%20for%20growth%20in%20Bioregenerative%20Life%20Support%20Systems:%20exploring%20the%20effect%20of%20high%E2%80%90LET%20ionising%20radiation%20on%20photosynthesis,%20leaf%20structure%20and%20fruit%20traits&rft.jtitle=Plant%20biology%20(Stuttgart,%20Germany)&rft.au=Arena,%20C.&rft.date=2019-07&rft.volume=21&rft.issue=4&rft.spage=615&rft.epage=626&rft.pages=615-626&rft.issn=1435-8603&rft.eissn=1438-8677&rft_id=info:doi/10.1111/plb.12952&rft_dat=%3Cproquest_cross%3E2235862080%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2235862080&rft_id=info:pmid/&rfr_iscdi=true |