Suitability of Solanum lycopersicum L. ‘Microtom’ for growth in Bioregenerative Life Support Systems: exploring the effect of high‐LET ionising radiation on photosynthesis, leaf structure and fruit traits

The realisation of manned space exploration requires the development of Bioregenerative Life Support Systems (BLSS). In such self‐sufficient closed habitats, higher plants have a fundamental role in air regeneration, water recovery, food production and waste recycling. In the space environment, ioni...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plant biology (Stuttgart, Germany) Germany), 2019-07, Vol.21 (4), p.615-626
Hauptverfasser: Arena, C., Vitale, E., Hay Mele, B., Cataletto, P. R., Turano, M., Simoniello, P., De Micco, V., Leegood, R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 626
container_issue 4
container_start_page 615
container_title Plant biology (Stuttgart, Germany)
container_volume 21
creator Arena, C.
Vitale, E.
Hay Mele, B.
Cataletto, P. R.
Turano, M.
Simoniello, P.
De Micco, V.
Leegood, R.
description The realisation of manned space exploration requires the development of Bioregenerative Life Support Systems (BLSS). In such self‐sufficient closed habitats, higher plants have a fundamental role in air regeneration, water recovery, food production and waste recycling. In the space environment, ionising radiation represents one of the main constraints to plant growth. In this study, we explore whether low doses of heavy ions, namely Ca 25 Gy, delivered at the seed stage, may induce positive outcomes on growth and functional traits in plants of Solanum lycopersicum L. ‘Microtom’. After irradiation of seed, plant growth was monitored during the whole plant life cycle, from germination to fruit ripening. Morphological parameters, photosynthetic efficiency, leaf anatomical functional traits and antioxidant production in leaves and fruits were analysed. Our data demonstrate that irradiation of seeds with 25 Gy Ca ions does not prevent achievement of the seed‐to‐seed cycle in ‘Microtom’, and induces a more compact plant size compared to the control. Plants germinated from irradiated seeds show better photochemical efficiency than controls, likely due to the higher amount of D1 protein and photosynthetic pigment content. Leaves of these plants also had smaller cells with a lower number of chloroplasts. The dose of 25 Gy Ca ions is also responsible for positive outcomes in fruits: although developing a lower number of berries, plants germinated from irradiated seeds produce larger berries, richer in carotenoids, ascorbic acid and anthocyanins than controls. These specific traits may be useful for ‘Microtom’ cultivation in BLSS in space, in so far as the crew members could benefit from fresh food richer in functional compounds that can be directly produced on board.
doi_str_mv 10.1111/plb.12952
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2160731340</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2235862080</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3302-ba29a0b9ee10b6d105742784633721924f86166b71a9e1f9208fecc1f41e23d13</originalsourceid><addsrcrecordid>eNp1kctu1DAUhiMEEqWw4A2OxAYkZupLJhd2tCoFKQikKevIyRxPTuXEwXZasptHYFlei0eYJ8HTYYWEZcnH0nf-c_mT5CVnSx7P2WiaJRflSjxKTngqi0WR5fnjh3gVYyafJs-8v2GMpyXjJ8nv9URBNWQozGA1rK1Rw9SDmVs7ovPUxk-1hP3u_jO1zgbb73e_QFsHW2fvQgc0wDlZh1sc0KlAtwgVaYT1NI7WBVjPPmDv3wH-GI11NGwhdAioNbbhULKjbbff_awur4HsQP5AOLWhqGUHiHfsYlk_DzHNk38LBpUGH9zUhskhqGED2sUxIDhFwT9PnmhlPL74-54m3z5cXl98XFRfrj5dvK8WrZRMLBolSsWaEpGzJttwtspTkRdpJmUueClSXWQ8y5qcqxK5LgUrYsct1ylHITdcniavj7qjs98n9KHuybdo4gLRTr4WPGO55DJlEX31D3pjJzfE7moh5KrIoviBenOk4p69d6jr0VGv3FxzVh_craO79YO7kT07sndkcP4_WH-tzo8ZfwDfO60Y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2235862080</pqid></control><display><type>article</type><title>Suitability of Solanum lycopersicum L. ‘Microtom’ for growth in Bioregenerative Life Support Systems: exploring the effect of high‐LET ionising radiation on photosynthesis, leaf structure and fruit traits</title><source>Wiley Online Library - AutoHoldings Journals</source><creator>Arena, C. ; Vitale, E. ; Hay Mele, B. ; Cataletto, P. R. ; Turano, M. ; Simoniello, P. ; De Micco, V. ; Leegood, R.</creator><creatorcontrib>Arena, C. ; Vitale, E. ; Hay Mele, B. ; Cataletto, P. R. ; Turano, M. ; Simoniello, P. ; De Micco, V. ; Leegood, R.</creatorcontrib><description>The realisation of manned space exploration requires the development of Bioregenerative Life Support Systems (BLSS). In such self‐sufficient closed habitats, higher plants have a fundamental role in air regeneration, water recovery, food production and waste recycling. In the space environment, ionising radiation represents one of the main constraints to plant growth. In this study, we explore whether low doses of heavy ions, namely Ca 25 Gy, delivered at the seed stage, may induce positive outcomes on growth and functional traits in plants of Solanum lycopersicum L. ‘Microtom’. After irradiation of seed, plant growth was monitored during the whole plant life cycle, from germination to fruit ripening. Morphological parameters, photosynthetic efficiency, leaf anatomical functional traits and antioxidant production in leaves and fruits were analysed. Our data demonstrate that irradiation of seeds with 25 Gy Ca ions does not prevent achievement of the seed‐to‐seed cycle in ‘Microtom’, and induces a more compact plant size compared to the control. Plants germinated from irradiated seeds show better photochemical efficiency than controls, likely due to the higher amount of D1 protein and photosynthetic pigment content. Leaves of these plants also had smaller cells with a lower number of chloroplasts. The dose of 25 Gy Ca ions is also responsible for positive outcomes in fruits: although developing a lower number of berries, plants germinated from irradiated seeds produce larger berries, richer in carotenoids, ascorbic acid and anthocyanins than controls. These specific traits may be useful for ‘Microtom’ cultivation in BLSS in space, in so far as the crew members could benefit from fresh food richer in functional compounds that can be directly produced on board.</description><identifier>ISSN: 1435-8603</identifier><identifier>EISSN: 1438-8677</identifier><identifier>DOI: 10.1111/plb.12952</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Aerospace environments ; Anthocyanins ; Antioxidants ; Ascorbic acid ; Berries ; Calcium ions ; Carotenoids ; Chloroplasts ; Cultivation ; D1 protein ; Food ; Food production ; Fruits ; Germination ; Habitability ; Heavy ions ; Ionizing radiation ; Ions ; Irradiation ; leaf anatomy ; Leaves ; Life cycles ; Life support systems ; Manned space flight ; Photochemicals ; Photosynthesis ; Plant growth ; Recovering ; Regeneration ; Ripening ; Seeds ; Solanum lycopersicum ; space ecosystem ; Space exploration ; tomato fruits</subject><ispartof>Plant biology (Stuttgart, Germany), 2019-07, Vol.21 (4), p.615-626</ispartof><rights>2018 German Society for Plant Sciences and The Royal Botanical Society of the Netherlands</rights><rights>2019 German Society for Plant Sciences and The Royal Botanical Society of the Netherlands</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3302-ba29a0b9ee10b6d105742784633721924f86166b71a9e1f9208fecc1f41e23d13</citedby><cites>FETCH-LOGICAL-c3302-ba29a0b9ee10b6d105742784633721924f86166b71a9e1f9208fecc1f41e23d13</cites><orcidid>0000-0002-4282-9525 ; 0000-0002-9718-2941</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fplb.12952$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fplb.12952$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Arena, C.</creatorcontrib><creatorcontrib>Vitale, E.</creatorcontrib><creatorcontrib>Hay Mele, B.</creatorcontrib><creatorcontrib>Cataletto, P. R.</creatorcontrib><creatorcontrib>Turano, M.</creatorcontrib><creatorcontrib>Simoniello, P.</creatorcontrib><creatorcontrib>De Micco, V.</creatorcontrib><creatorcontrib>Leegood, R.</creatorcontrib><title>Suitability of Solanum lycopersicum L. ‘Microtom’ for growth in Bioregenerative Life Support Systems: exploring the effect of high‐LET ionising radiation on photosynthesis, leaf structure and fruit traits</title><title>Plant biology (Stuttgart, Germany)</title><description>The realisation of manned space exploration requires the development of Bioregenerative Life Support Systems (BLSS). In such self‐sufficient closed habitats, higher plants have a fundamental role in air regeneration, water recovery, food production and waste recycling. In the space environment, ionising radiation represents one of the main constraints to plant growth. In this study, we explore whether low doses of heavy ions, namely Ca 25 Gy, delivered at the seed stage, may induce positive outcomes on growth and functional traits in plants of Solanum lycopersicum L. ‘Microtom’. After irradiation of seed, plant growth was monitored during the whole plant life cycle, from germination to fruit ripening. Morphological parameters, photosynthetic efficiency, leaf anatomical functional traits and antioxidant production in leaves and fruits were analysed. Our data demonstrate that irradiation of seeds with 25 Gy Ca ions does not prevent achievement of the seed‐to‐seed cycle in ‘Microtom’, and induces a more compact plant size compared to the control. Plants germinated from irradiated seeds show better photochemical efficiency than controls, likely due to the higher amount of D1 protein and photosynthetic pigment content. Leaves of these plants also had smaller cells with a lower number of chloroplasts. The dose of 25 Gy Ca ions is also responsible for positive outcomes in fruits: although developing a lower number of berries, plants germinated from irradiated seeds produce larger berries, richer in carotenoids, ascorbic acid and anthocyanins than controls. These specific traits may be useful for ‘Microtom’ cultivation in BLSS in space, in so far as the crew members could benefit from fresh food richer in functional compounds that can be directly produced on board.</description><subject>Aerospace environments</subject><subject>Anthocyanins</subject><subject>Antioxidants</subject><subject>Ascorbic acid</subject><subject>Berries</subject><subject>Calcium ions</subject><subject>Carotenoids</subject><subject>Chloroplasts</subject><subject>Cultivation</subject><subject>D1 protein</subject><subject>Food</subject><subject>Food production</subject><subject>Fruits</subject><subject>Germination</subject><subject>Habitability</subject><subject>Heavy ions</subject><subject>Ionizing radiation</subject><subject>Ions</subject><subject>Irradiation</subject><subject>leaf anatomy</subject><subject>Leaves</subject><subject>Life cycles</subject><subject>Life support systems</subject><subject>Manned space flight</subject><subject>Photochemicals</subject><subject>Photosynthesis</subject><subject>Plant growth</subject><subject>Recovering</subject><subject>Regeneration</subject><subject>Ripening</subject><subject>Seeds</subject><subject>Solanum lycopersicum</subject><subject>space ecosystem</subject><subject>Space exploration</subject><subject>tomato fruits</subject><issn>1435-8603</issn><issn>1438-8677</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kctu1DAUhiMEEqWw4A2OxAYkZupLJhd2tCoFKQikKevIyRxPTuXEwXZasptHYFlei0eYJ8HTYYWEZcnH0nf-c_mT5CVnSx7P2WiaJRflSjxKTngqi0WR5fnjh3gVYyafJs-8v2GMpyXjJ8nv9URBNWQozGA1rK1Rw9SDmVs7ovPUxk-1hP3u_jO1zgbb73e_QFsHW2fvQgc0wDlZh1sc0KlAtwgVaYT1NI7WBVjPPmDv3wH-GI11NGwhdAioNbbhULKjbbff_awur4HsQP5AOLWhqGUHiHfsYlk_DzHNk38LBpUGH9zUhskhqGED2sUxIDhFwT9PnmhlPL74-54m3z5cXl98XFRfrj5dvK8WrZRMLBolSsWaEpGzJttwtspTkRdpJmUueClSXWQ8y5qcqxK5LgUrYsct1ylHITdcniavj7qjs98n9KHuybdo4gLRTr4WPGO55DJlEX31D3pjJzfE7moh5KrIoviBenOk4p69d6jr0VGv3FxzVh_craO79YO7kT07sndkcP4_WH-tzo8ZfwDfO60Y</recordid><startdate>201907</startdate><enddate>201907</enddate><creator>Arena, C.</creator><creator>Vitale, E.</creator><creator>Hay Mele, B.</creator><creator>Cataletto, P. R.</creator><creator>Turano, M.</creator><creator>Simoniello, P.</creator><creator>De Micco, V.</creator><creator>Leegood, R.</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4282-9525</orcidid><orcidid>https://orcid.org/0000-0002-9718-2941</orcidid></search><sort><creationdate>201907</creationdate><title>Suitability of Solanum lycopersicum L. ‘Microtom’ for growth in Bioregenerative Life Support Systems: exploring the effect of high‐LET ionising radiation on photosynthesis, leaf structure and fruit traits</title><author>Arena, C. ; Vitale, E. ; Hay Mele, B. ; Cataletto, P. R. ; Turano, M. ; Simoniello, P. ; De Micco, V. ; Leegood, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3302-ba29a0b9ee10b6d105742784633721924f86166b71a9e1f9208fecc1f41e23d13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Aerospace environments</topic><topic>Anthocyanins</topic><topic>Antioxidants</topic><topic>Ascorbic acid</topic><topic>Berries</topic><topic>Calcium ions</topic><topic>Carotenoids</topic><topic>Chloroplasts</topic><topic>Cultivation</topic><topic>D1 protein</topic><topic>Food</topic><topic>Food production</topic><topic>Fruits</topic><topic>Germination</topic><topic>Habitability</topic><topic>Heavy ions</topic><topic>Ionizing radiation</topic><topic>Ions</topic><topic>Irradiation</topic><topic>leaf anatomy</topic><topic>Leaves</topic><topic>Life cycles</topic><topic>Life support systems</topic><topic>Manned space flight</topic><topic>Photochemicals</topic><topic>Photosynthesis</topic><topic>Plant growth</topic><topic>Recovering</topic><topic>Regeneration</topic><topic>Ripening</topic><topic>Seeds</topic><topic>Solanum lycopersicum</topic><topic>space ecosystem</topic><topic>Space exploration</topic><topic>tomato fruits</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Arena, C.</creatorcontrib><creatorcontrib>Vitale, E.</creatorcontrib><creatorcontrib>Hay Mele, B.</creatorcontrib><creatorcontrib>Cataletto, P. R.</creatorcontrib><creatorcontrib>Turano, M.</creatorcontrib><creatorcontrib>Simoniello, P.</creatorcontrib><creatorcontrib>De Micco, V.</creatorcontrib><creatorcontrib>Leegood, R.</creatorcontrib><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Plant biology (Stuttgart, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Arena, C.</au><au>Vitale, E.</au><au>Hay Mele, B.</au><au>Cataletto, P. R.</au><au>Turano, M.</au><au>Simoniello, P.</au><au>De Micco, V.</au><au>Leegood, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Suitability of Solanum lycopersicum L. ‘Microtom’ for growth in Bioregenerative Life Support Systems: exploring the effect of high‐LET ionising radiation on photosynthesis, leaf structure and fruit traits</atitle><jtitle>Plant biology (Stuttgart, Germany)</jtitle><date>2019-07</date><risdate>2019</risdate><volume>21</volume><issue>4</issue><spage>615</spage><epage>626</epage><pages>615-626</pages><issn>1435-8603</issn><eissn>1438-8677</eissn><abstract>The realisation of manned space exploration requires the development of Bioregenerative Life Support Systems (BLSS). In such self‐sufficient closed habitats, higher plants have a fundamental role in air regeneration, water recovery, food production and waste recycling. In the space environment, ionising radiation represents one of the main constraints to plant growth. In this study, we explore whether low doses of heavy ions, namely Ca 25 Gy, delivered at the seed stage, may induce positive outcomes on growth and functional traits in plants of Solanum lycopersicum L. ‘Microtom’. After irradiation of seed, plant growth was monitored during the whole plant life cycle, from germination to fruit ripening. Morphological parameters, photosynthetic efficiency, leaf anatomical functional traits and antioxidant production in leaves and fruits were analysed. Our data demonstrate that irradiation of seeds with 25 Gy Ca ions does not prevent achievement of the seed‐to‐seed cycle in ‘Microtom’, and induces a more compact plant size compared to the control. Plants germinated from irradiated seeds show better photochemical efficiency than controls, likely due to the higher amount of D1 protein and photosynthetic pigment content. Leaves of these plants also had smaller cells with a lower number of chloroplasts. The dose of 25 Gy Ca ions is also responsible for positive outcomes in fruits: although developing a lower number of berries, plants germinated from irradiated seeds produce larger berries, richer in carotenoids, ascorbic acid and anthocyanins than controls. These specific traits may be useful for ‘Microtom’ cultivation in BLSS in space, in so far as the crew members could benefit from fresh food richer in functional compounds that can be directly produced on board.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1111/plb.12952</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-4282-9525</orcidid><orcidid>https://orcid.org/0000-0002-9718-2941</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1435-8603
ispartof Plant biology (Stuttgart, Germany), 2019-07, Vol.21 (4), p.615-626
issn 1435-8603
1438-8677
language eng
recordid cdi_proquest_miscellaneous_2160731340
source Wiley Online Library - AutoHoldings Journals
subjects Aerospace environments
Anthocyanins
Antioxidants
Ascorbic acid
Berries
Calcium ions
Carotenoids
Chloroplasts
Cultivation
D1 protein
Food
Food production
Fruits
Germination
Habitability
Heavy ions
Ionizing radiation
Ions
Irradiation
leaf anatomy
Leaves
Life cycles
Life support systems
Manned space flight
Photochemicals
Photosynthesis
Plant growth
Recovering
Regeneration
Ripening
Seeds
Solanum lycopersicum
space ecosystem
Space exploration
tomato fruits
title Suitability of Solanum lycopersicum L. ‘Microtom’ for growth in Bioregenerative Life Support Systems: exploring the effect of high‐LET ionising radiation on photosynthesis, leaf structure and fruit traits
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T18%3A10%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Suitability%20of%20Solanum%20lycopersicum%20L.%20%E2%80%98Microtom%E2%80%99%20for%20growth%20in%20Bioregenerative%20Life%20Support%20Systems:%20exploring%20the%20effect%20of%20high%E2%80%90LET%20ionising%20radiation%20on%20photosynthesis,%20leaf%20structure%20and%20fruit%20traits&rft.jtitle=Plant%20biology%20(Stuttgart,%20Germany)&rft.au=Arena,%20C.&rft.date=2019-07&rft.volume=21&rft.issue=4&rft.spage=615&rft.epage=626&rft.pages=615-626&rft.issn=1435-8603&rft.eissn=1438-8677&rft_id=info:doi/10.1111/plb.12952&rft_dat=%3Cproquest_cross%3E2235862080%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2235862080&rft_id=info:pmid/&rfr_iscdi=true