Design and Fabrication of Heterogeneous, Deformable Substrates for the Mechanically Guided 3D Assembly

Development of schemes to form complex three-dimensional (3D) mesostructures in functional materials is a topic of broad interest, thanks to the ubiquitous applications across a diversity of technologies. Recently established schemes in the mechanically guided 3D assembly allow deterministic transfo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2019-01, Vol.11 (3), p.3482-3492
Hauptverfasser: Luan, Haiwen, Cheng, Xu, Wang, Ao, Zhao, Shiwei, Bai, Ke, Wang, Heling, Pang, Wenbo, Xie, Zhaoqian, Li, Kan, Zhang, Fan, Xue, Yeguang, Huang, Yonggang, Zhang, Yihui
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3492
container_issue 3
container_start_page 3482
container_title ACS applied materials & interfaces
container_volume 11
creator Luan, Haiwen
Cheng, Xu
Wang, Ao
Zhao, Shiwei
Bai, Ke
Wang, Heling
Pang, Wenbo
Xie, Zhaoqian
Li, Kan
Zhang, Fan
Xue, Yeguang
Huang, Yonggang
Zhang, Yihui
description Development of schemes to form complex three-dimensional (3D) mesostructures in functional materials is a topic of broad interest, thanks to the ubiquitous applications across a diversity of technologies. Recently established schemes in the mechanically guided 3D assembly allow deterministic transformation of two-dimensional structures into sophisticated 3D architectures by controlled compressive buckling resulted from strain release of prestretched elastomer substrates. Existing studies mostly exploited supporting substrates made of homogeneous elastomeric material with uniform thickness, which produces relatively uniform strain field to drive the 3D assembly, thus posing limitations to the geometric diversity of resultant 3D mesostructures. To offer nonuniform strains with desired spatial distributions in the 3D assembly, this paper introduces a versatile set of concepts in the design of engineered substrates with heterogeneous integration of materials of different moduli. Such heterogeneous, deformable substrates can achieve large strain gradients and efficient strain isolation/magnification, which are difficult to realize using the previously reported strategies. Theoretical and experimental studies on the underlying mechanics offer a viable route to the design of heterogeneous, deformable substrates to yield favorable strain fields. A broad collection of 3D mesostructures and associated heterogeneous substrates is fabricated and demonstrated, including examples that resemble windmills, scorpions, and manta rays and those that have application potentials in tunable inductors and vibrational microsystems.
doi_str_mv 10.1021/acsami.8b19187
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2160365446</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2160365446</sourcerecordid><originalsourceid>FETCH-LOGICAL-a330t-c1ecb72365861fccde4859da45b783b2c7dd49178ab0a83b7521e13f4e7217153</originalsourceid><addsrcrecordid>eNp1kL1PwzAUxC0EoqWwMiKPCJHir8TuWLW0RSpiAObIdl7aVPkodjL0v8eQ0o3pPZ1-d9IdQreUjClh9Elbr6tirAydUCXP0JBOhIgUi9n56RdigK683xGScEbiSzTgJFZCJskQ5XPwxabGus7wQhtXWN0WTY2bHK-gBddsoIam8494DnnjKm1KwO-d8a3TLXgcNNxuAb-C3eo6uMvygJddkUGG-RxPvYfKlIdrdJHr0sPN8Y7Q5-L5Y7aK1m_Ll9l0HWnOSRtZCtZIxpNYJTS3NgOh4kmmRWyk4oZZmWViQqXShuggyJhRoDwXIBmVNOYjdN_n7l3z1YFv06rwFspS_7ZIGU1ISBciCei4R61rvHeQp3tXVNodUkrSn23Tftv0uG0w3B2zO1NBdsL_xgzAQw8EY7prOleHqv-lfQOqnYQC</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2160365446</pqid></control><display><type>article</type><title>Design and Fabrication of Heterogeneous, Deformable Substrates for the Mechanically Guided 3D Assembly</title><source>ACS Publications</source><creator>Luan, Haiwen ; Cheng, Xu ; Wang, Ao ; Zhao, Shiwei ; Bai, Ke ; Wang, Heling ; Pang, Wenbo ; Xie, Zhaoqian ; Li, Kan ; Zhang, Fan ; Xue, Yeguang ; Huang, Yonggang ; Zhang, Yihui</creator><creatorcontrib>Luan, Haiwen ; Cheng, Xu ; Wang, Ao ; Zhao, Shiwei ; Bai, Ke ; Wang, Heling ; Pang, Wenbo ; Xie, Zhaoqian ; Li, Kan ; Zhang, Fan ; Xue, Yeguang ; Huang, Yonggang ; Zhang, Yihui</creatorcontrib><description>Development of schemes to form complex three-dimensional (3D) mesostructures in functional materials is a topic of broad interest, thanks to the ubiquitous applications across a diversity of technologies. Recently established schemes in the mechanically guided 3D assembly allow deterministic transformation of two-dimensional structures into sophisticated 3D architectures by controlled compressive buckling resulted from strain release of prestretched elastomer substrates. Existing studies mostly exploited supporting substrates made of homogeneous elastomeric material with uniform thickness, which produces relatively uniform strain field to drive the 3D assembly, thus posing limitations to the geometric diversity of resultant 3D mesostructures. To offer nonuniform strains with desired spatial distributions in the 3D assembly, this paper introduces a versatile set of concepts in the design of engineered substrates with heterogeneous integration of materials of different moduli. Such heterogeneous, deformable substrates can achieve large strain gradients and efficient strain isolation/magnification, which are difficult to realize using the previously reported strategies. Theoretical and experimental studies on the underlying mechanics offer a viable route to the design of heterogeneous, deformable substrates to yield favorable strain fields. A broad collection of 3D mesostructures and associated heterogeneous substrates is fabricated and demonstrated, including examples that resemble windmills, scorpions, and manta rays and those that have application potentials in tunable inductors and vibrational microsystems.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.8b19187</identifier><identifier>PMID: 30584766</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>ACS applied materials &amp; interfaces, 2019-01, Vol.11 (3), p.3482-3492</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a330t-c1ecb72365861fccde4859da45b783b2c7dd49178ab0a83b7521e13f4e7217153</citedby><cites>FETCH-LOGICAL-a330t-c1ecb72365861fccde4859da45b783b2c7dd49178ab0a83b7521e13f4e7217153</cites><orcidid>0000-0003-0722-1108 ; 0000-0001-7536-945X ; 0000-0003-0885-2067</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.8b19187$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.8b19187$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2751,27055,27903,27904,56716,56766</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30584766$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Luan, Haiwen</creatorcontrib><creatorcontrib>Cheng, Xu</creatorcontrib><creatorcontrib>Wang, Ao</creatorcontrib><creatorcontrib>Zhao, Shiwei</creatorcontrib><creatorcontrib>Bai, Ke</creatorcontrib><creatorcontrib>Wang, Heling</creatorcontrib><creatorcontrib>Pang, Wenbo</creatorcontrib><creatorcontrib>Xie, Zhaoqian</creatorcontrib><creatorcontrib>Li, Kan</creatorcontrib><creatorcontrib>Zhang, Fan</creatorcontrib><creatorcontrib>Xue, Yeguang</creatorcontrib><creatorcontrib>Huang, Yonggang</creatorcontrib><creatorcontrib>Zhang, Yihui</creatorcontrib><title>Design and Fabrication of Heterogeneous, Deformable Substrates for the Mechanically Guided 3D Assembly</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>Development of schemes to form complex three-dimensional (3D) mesostructures in functional materials is a topic of broad interest, thanks to the ubiquitous applications across a diversity of technologies. Recently established schemes in the mechanically guided 3D assembly allow deterministic transformation of two-dimensional structures into sophisticated 3D architectures by controlled compressive buckling resulted from strain release of prestretched elastomer substrates. Existing studies mostly exploited supporting substrates made of homogeneous elastomeric material with uniform thickness, which produces relatively uniform strain field to drive the 3D assembly, thus posing limitations to the geometric diversity of resultant 3D mesostructures. To offer nonuniform strains with desired spatial distributions in the 3D assembly, this paper introduces a versatile set of concepts in the design of engineered substrates with heterogeneous integration of materials of different moduli. Such heterogeneous, deformable substrates can achieve large strain gradients and efficient strain isolation/magnification, which are difficult to realize using the previously reported strategies. Theoretical and experimental studies on the underlying mechanics offer a viable route to the design of heterogeneous, deformable substrates to yield favorable strain fields. A broad collection of 3D mesostructures and associated heterogeneous substrates is fabricated and demonstrated, including examples that resemble windmills, scorpions, and manta rays and those that have application potentials in tunable inductors and vibrational microsystems.</description><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kL1PwzAUxC0EoqWwMiKPCJHir8TuWLW0RSpiAObIdl7aVPkodjL0v8eQ0o3pPZ1-d9IdQreUjClh9Elbr6tirAydUCXP0JBOhIgUi9n56RdigK683xGScEbiSzTgJFZCJskQ5XPwxabGus7wQhtXWN0WTY2bHK-gBddsoIam8494DnnjKm1KwO-d8a3TLXgcNNxuAb-C3eo6uMvygJddkUGG-RxPvYfKlIdrdJHr0sPN8Y7Q5-L5Y7aK1m_Ll9l0HWnOSRtZCtZIxpNYJTS3NgOh4kmmRWyk4oZZmWViQqXShuggyJhRoDwXIBmVNOYjdN_n7l3z1YFv06rwFspS_7ZIGU1ISBciCei4R61rvHeQp3tXVNodUkrSn23Tftv0uG0w3B2zO1NBdsL_xgzAQw8EY7prOleHqv-lfQOqnYQC</recordid><startdate>20190123</startdate><enddate>20190123</enddate><creator>Luan, Haiwen</creator><creator>Cheng, Xu</creator><creator>Wang, Ao</creator><creator>Zhao, Shiwei</creator><creator>Bai, Ke</creator><creator>Wang, Heling</creator><creator>Pang, Wenbo</creator><creator>Xie, Zhaoqian</creator><creator>Li, Kan</creator><creator>Zhang, Fan</creator><creator>Xue, Yeguang</creator><creator>Huang, Yonggang</creator><creator>Zhang, Yihui</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0722-1108</orcidid><orcidid>https://orcid.org/0000-0001-7536-945X</orcidid><orcidid>https://orcid.org/0000-0003-0885-2067</orcidid></search><sort><creationdate>20190123</creationdate><title>Design and Fabrication of Heterogeneous, Deformable Substrates for the Mechanically Guided 3D Assembly</title><author>Luan, Haiwen ; Cheng, Xu ; Wang, Ao ; Zhao, Shiwei ; Bai, Ke ; Wang, Heling ; Pang, Wenbo ; Xie, Zhaoqian ; Li, Kan ; Zhang, Fan ; Xue, Yeguang ; Huang, Yonggang ; Zhang, Yihui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a330t-c1ecb72365861fccde4859da45b783b2c7dd49178ab0a83b7521e13f4e7217153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Luan, Haiwen</creatorcontrib><creatorcontrib>Cheng, Xu</creatorcontrib><creatorcontrib>Wang, Ao</creatorcontrib><creatorcontrib>Zhao, Shiwei</creatorcontrib><creatorcontrib>Bai, Ke</creatorcontrib><creatorcontrib>Wang, Heling</creatorcontrib><creatorcontrib>Pang, Wenbo</creatorcontrib><creatorcontrib>Xie, Zhaoqian</creatorcontrib><creatorcontrib>Li, Kan</creatorcontrib><creatorcontrib>Zhang, Fan</creatorcontrib><creatorcontrib>Xue, Yeguang</creatorcontrib><creatorcontrib>Huang, Yonggang</creatorcontrib><creatorcontrib>Zhang, Yihui</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Luan, Haiwen</au><au>Cheng, Xu</au><au>Wang, Ao</au><au>Zhao, Shiwei</au><au>Bai, Ke</au><au>Wang, Heling</au><au>Pang, Wenbo</au><au>Xie, Zhaoqian</au><au>Li, Kan</au><au>Zhang, Fan</au><au>Xue, Yeguang</au><au>Huang, Yonggang</au><au>Zhang, Yihui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design and Fabrication of Heterogeneous, Deformable Substrates for the Mechanically Guided 3D Assembly</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2019-01-23</date><risdate>2019</risdate><volume>11</volume><issue>3</issue><spage>3482</spage><epage>3492</epage><pages>3482-3492</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>Development of schemes to form complex three-dimensional (3D) mesostructures in functional materials is a topic of broad interest, thanks to the ubiquitous applications across a diversity of technologies. Recently established schemes in the mechanically guided 3D assembly allow deterministic transformation of two-dimensional structures into sophisticated 3D architectures by controlled compressive buckling resulted from strain release of prestretched elastomer substrates. Existing studies mostly exploited supporting substrates made of homogeneous elastomeric material with uniform thickness, which produces relatively uniform strain field to drive the 3D assembly, thus posing limitations to the geometric diversity of resultant 3D mesostructures. To offer nonuniform strains with desired spatial distributions in the 3D assembly, this paper introduces a versatile set of concepts in the design of engineered substrates with heterogeneous integration of materials of different moduli. Such heterogeneous, deformable substrates can achieve large strain gradients and efficient strain isolation/magnification, which are difficult to realize using the previously reported strategies. Theoretical and experimental studies on the underlying mechanics offer a viable route to the design of heterogeneous, deformable substrates to yield favorable strain fields. A broad collection of 3D mesostructures and associated heterogeneous substrates is fabricated and demonstrated, including examples that resemble windmills, scorpions, and manta rays and those that have application potentials in tunable inductors and vibrational microsystems.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>30584766</pmid><doi>10.1021/acsami.8b19187</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-0722-1108</orcidid><orcidid>https://orcid.org/0000-0001-7536-945X</orcidid><orcidid>https://orcid.org/0000-0003-0885-2067</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2019-01, Vol.11 (3), p.3482-3492
issn 1944-8244
1944-8252
language eng
recordid cdi_proquest_miscellaneous_2160365446
source ACS Publications
title Design and Fabrication of Heterogeneous, Deformable Substrates for the Mechanically Guided 3D Assembly
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T05%3A34%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20and%20Fabrication%20of%20Heterogeneous,%20Deformable%20Substrates%20for%20the%20Mechanically%20Guided%203D%20Assembly&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Luan,%20Haiwen&rft.date=2019-01-23&rft.volume=11&rft.issue=3&rft.spage=3482&rft.epage=3492&rft.pages=3482-3492&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.8b19187&rft_dat=%3Cproquest_cross%3E2160365446%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2160365446&rft_id=info:pmid/30584766&rfr_iscdi=true