In Situ Self-Formed Nanosheet MoS3/Reduced Graphene Oxide Material Showing Superior Performance as a Lithium-Ion Battery Cathode
Although lithium–sulfur (Li–S) batteries have 5–10 times higher theoretical capacity (1675 mAh g–1) than present commercial lithium-ion batteries, Li–S batteries show a rapid and continuous capacity fading due to the polysulfide dissolution in common electrolytes. Here, we propose the use of a sulfu...
Gespeichert in:
Veröffentlicht in: | ACS nano 2019-02, Vol.13 (2), p.1490-1498 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1498 |
---|---|
container_issue | 2 |
container_start_page | 1490 |
container_title | ACS nano |
container_volume | 13 |
creator | Chang, Uijin Lee, Jung Tae Yun, Jin-Mun Lee, Byeongyoung Lee, Seung Woo Joh, Han-Ik Eom, KwangSup Fuller, Thomas F |
description | Although lithium–sulfur (Li–S) batteries have 5–10 times higher theoretical capacity (1675 mAh g–1) than present commercial lithium-ion batteries, Li–S batteries show a rapid and continuous capacity fading due to the polysulfide dissolution in common electrolytes. Here, we propose the use of a sulfur-based cathode material, amorphous MoS3 and reduced graphene oxide (r-GO) composite, which can be substituted for the pure sulfur-based cathodes. In order to enhance kinetics and stability of the electrodes, we intentionally pulverize the microsized MoS3 sheet into nanosheets and form an ultrathin nano-SEI on the surface using in situ electrochemical methods. Then, the pulverized nanosheets are securely anchored by the oxygen functional group of r-GO. As a result, the electrochemically treated MoS3/r-GO electrode shows superior performance that surpasses pure sulfur-based electrodes; it exhibits a capacity of about 900 mAh g–1 at a rate of 5C for 2500 cycles without capacity fading. Moreover, a full-cell battery employing the MoS3/r-GO cathode with a silicon–carbon composite anode displays a 3–5 times higher energy density (1725 Wh kg–1/7100 Wh L–1) than present LIBs. |
doi_str_mv | 10.1021/acsnano.8b07191 |
format | Article |
fullrecord | <record><control><sourceid>proquest_acs_j</sourceid><recordid>TN_cdi_proquest_miscellaneous_2160150376</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2160150376</sourcerecordid><originalsourceid>FETCH-LOGICAL-a224t-aed2a38e02523d0f59463a285e7154df88ee89cedff4ed3ea7df3a1fc13b76883</originalsourceid><addsrcrecordid>eNo9kM1LAzEUxIMoWKtnrzkKsm2y2Y_0qMXWQmvFVfC2vG5e3C3bpG6yqDf_dCMWT-8xzAzDj5BLzkacxXwMlTNg7EhuWM4n_IgM-ERkEZPZ6_H_n_JTcubclrE0l3k2IN8LQ4vG97TAVkcz2-1Q0YfQ42pET1e2EOMnVH0V5HkH-xoN0vVno5CuwGPXQEuL2n405o0W_T4ItqOP2OnQBKZCCo4CXTa-bvpdtLCG3oIPuS86BV9bhefkREPr8OJwh-Rldvc8vY-W6_lierOMII4THwGqGIREFqexUEynkyQTEMsUc54mSkuJKCdhpdYJKoGQKy2A64qLTZ5JKYbk6q9339n3Hp0vd42rsG3BoO1dGfOM8ZSJPAvW6z9rQFpubd-ZMKzkrPzlXB44lwfO4gdup3Pn</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2160150376</pqid></control><display><type>article</type><title>In Situ Self-Formed Nanosheet MoS3/Reduced Graphene Oxide Material Showing Superior Performance as a Lithium-Ion Battery Cathode</title><source>ACS Publications</source><creator>Chang, Uijin ; Lee, Jung Tae ; Yun, Jin-Mun ; Lee, Byeongyoung ; Lee, Seung Woo ; Joh, Han-Ik ; Eom, KwangSup ; Fuller, Thomas F</creator><creatorcontrib>Chang, Uijin ; Lee, Jung Tae ; Yun, Jin-Mun ; Lee, Byeongyoung ; Lee, Seung Woo ; Joh, Han-Ik ; Eom, KwangSup ; Fuller, Thomas F</creatorcontrib><description>Although lithium–sulfur (Li–S) batteries have 5–10 times higher theoretical capacity (1675 mAh g–1) than present commercial lithium-ion batteries, Li–S batteries show a rapid and continuous capacity fading due to the polysulfide dissolution in common electrolytes. Here, we propose the use of a sulfur-based cathode material, amorphous MoS3 and reduced graphene oxide (r-GO) composite, which can be substituted for the pure sulfur-based cathodes. In order to enhance kinetics and stability of the electrodes, we intentionally pulverize the microsized MoS3 sheet into nanosheets and form an ultrathin nano-SEI on the surface using in situ electrochemical methods. Then, the pulverized nanosheets are securely anchored by the oxygen functional group of r-GO. As a result, the electrochemically treated MoS3/r-GO electrode shows superior performance that surpasses pure sulfur-based electrodes; it exhibits a capacity of about 900 mAh g–1 at a rate of 5C for 2500 cycles without capacity fading. Moreover, a full-cell battery employing the MoS3/r-GO cathode with a silicon–carbon composite anode displays a 3–5 times higher energy density (1725 Wh kg–1/7100 Wh L–1) than present LIBs.</description><identifier>ISSN: 1936-0851</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/acsnano.8b07191</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>ACS nano, 2019-02, Vol.13 (2), p.1490-1498</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-3548-3642 ; 0000-0002-6188-4263 ; 0000-0003-2256-271X ; 0000-0002-2695-7105</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsnano.8b07191$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsnano.8b07191$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,27053,27901,27902,56713,56763</link.rule.ids></links><search><creatorcontrib>Chang, Uijin</creatorcontrib><creatorcontrib>Lee, Jung Tae</creatorcontrib><creatorcontrib>Yun, Jin-Mun</creatorcontrib><creatorcontrib>Lee, Byeongyoung</creatorcontrib><creatorcontrib>Lee, Seung Woo</creatorcontrib><creatorcontrib>Joh, Han-Ik</creatorcontrib><creatorcontrib>Eom, KwangSup</creatorcontrib><creatorcontrib>Fuller, Thomas F</creatorcontrib><title>In Situ Self-Formed Nanosheet MoS3/Reduced Graphene Oxide Material Showing Superior Performance as a Lithium-Ion Battery Cathode</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>Although lithium–sulfur (Li–S) batteries have 5–10 times higher theoretical capacity (1675 mAh g–1) than present commercial lithium-ion batteries, Li–S batteries show a rapid and continuous capacity fading due to the polysulfide dissolution in common electrolytes. Here, we propose the use of a sulfur-based cathode material, amorphous MoS3 and reduced graphene oxide (r-GO) composite, which can be substituted for the pure sulfur-based cathodes. In order to enhance kinetics and stability of the electrodes, we intentionally pulverize the microsized MoS3 sheet into nanosheets and form an ultrathin nano-SEI on the surface using in situ electrochemical methods. Then, the pulverized nanosheets are securely anchored by the oxygen functional group of r-GO. As a result, the electrochemically treated MoS3/r-GO electrode shows superior performance that surpasses pure sulfur-based electrodes; it exhibits a capacity of about 900 mAh g–1 at a rate of 5C for 2500 cycles without capacity fading. Moreover, a full-cell battery employing the MoS3/r-GO cathode with a silicon–carbon composite anode displays a 3–5 times higher energy density (1725 Wh kg–1/7100 Wh L–1) than present LIBs.</description><issn>1936-0851</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNo9kM1LAzEUxIMoWKtnrzkKsm2y2Y_0qMXWQmvFVfC2vG5e3C3bpG6yqDf_dCMWT-8xzAzDj5BLzkacxXwMlTNg7EhuWM4n_IgM-ERkEZPZ6_H_n_JTcubclrE0l3k2IN8LQ4vG97TAVkcz2-1Q0YfQ42pET1e2EOMnVH0V5HkH-xoN0vVno5CuwGPXQEuL2n405o0W_T4ItqOP2OnQBKZCCo4CXTa-bvpdtLCG3oIPuS86BV9bhefkREPr8OJwh-Rldvc8vY-W6_lierOMII4THwGqGIREFqexUEynkyQTEMsUc54mSkuJKCdhpdYJKoGQKy2A64qLTZ5JKYbk6q9339n3Hp0vd42rsG3BoO1dGfOM8ZSJPAvW6z9rQFpubd-ZMKzkrPzlXB44lwfO4gdup3Pn</recordid><startdate>20190226</startdate><enddate>20190226</enddate><creator>Chang, Uijin</creator><creator>Lee, Jung Tae</creator><creator>Yun, Jin-Mun</creator><creator>Lee, Byeongyoung</creator><creator>Lee, Seung Woo</creator><creator>Joh, Han-Ik</creator><creator>Eom, KwangSup</creator><creator>Fuller, Thomas F</creator><general>American Chemical Society</general><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3548-3642</orcidid><orcidid>https://orcid.org/0000-0002-6188-4263</orcidid><orcidid>https://orcid.org/0000-0003-2256-271X</orcidid><orcidid>https://orcid.org/0000-0002-2695-7105</orcidid></search><sort><creationdate>20190226</creationdate><title>In Situ Self-Formed Nanosheet MoS3/Reduced Graphene Oxide Material Showing Superior Performance as a Lithium-Ion Battery Cathode</title><author>Chang, Uijin ; Lee, Jung Tae ; Yun, Jin-Mun ; Lee, Byeongyoung ; Lee, Seung Woo ; Joh, Han-Ik ; Eom, KwangSup ; Fuller, Thomas F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a224t-aed2a38e02523d0f59463a285e7154df88ee89cedff4ed3ea7df3a1fc13b76883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chang, Uijin</creatorcontrib><creatorcontrib>Lee, Jung Tae</creatorcontrib><creatorcontrib>Yun, Jin-Mun</creatorcontrib><creatorcontrib>Lee, Byeongyoung</creatorcontrib><creatorcontrib>Lee, Seung Woo</creatorcontrib><creatorcontrib>Joh, Han-Ik</creatorcontrib><creatorcontrib>Eom, KwangSup</creatorcontrib><creatorcontrib>Fuller, Thomas F</creatorcontrib><collection>MEDLINE - Academic</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chang, Uijin</au><au>Lee, Jung Tae</au><au>Yun, Jin-Mun</au><au>Lee, Byeongyoung</au><au>Lee, Seung Woo</au><au>Joh, Han-Ik</au><au>Eom, KwangSup</au><au>Fuller, Thomas F</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In Situ Self-Formed Nanosheet MoS3/Reduced Graphene Oxide Material Showing Superior Performance as a Lithium-Ion Battery Cathode</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2019-02-26</date><risdate>2019</risdate><volume>13</volume><issue>2</issue><spage>1490</spage><epage>1498</epage><pages>1490-1498</pages><issn>1936-0851</issn><eissn>1936-086X</eissn><abstract>Although lithium–sulfur (Li–S) batteries have 5–10 times higher theoretical capacity (1675 mAh g–1) than present commercial lithium-ion batteries, Li–S batteries show a rapid and continuous capacity fading due to the polysulfide dissolution in common electrolytes. Here, we propose the use of a sulfur-based cathode material, amorphous MoS3 and reduced graphene oxide (r-GO) composite, which can be substituted for the pure sulfur-based cathodes. In order to enhance kinetics and stability of the electrodes, we intentionally pulverize the microsized MoS3 sheet into nanosheets and form an ultrathin nano-SEI on the surface using in situ electrochemical methods. Then, the pulverized nanosheets are securely anchored by the oxygen functional group of r-GO. As a result, the electrochemically treated MoS3/r-GO electrode shows superior performance that surpasses pure sulfur-based electrodes; it exhibits a capacity of about 900 mAh g–1 at a rate of 5C for 2500 cycles without capacity fading. Moreover, a full-cell battery employing the MoS3/r-GO cathode with a silicon–carbon composite anode displays a 3–5 times higher energy density (1725 Wh kg–1/7100 Wh L–1) than present LIBs.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsnano.8b07191</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-3548-3642</orcidid><orcidid>https://orcid.org/0000-0002-6188-4263</orcidid><orcidid>https://orcid.org/0000-0003-2256-271X</orcidid><orcidid>https://orcid.org/0000-0002-2695-7105</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1936-0851 |
ispartof | ACS nano, 2019-02, Vol.13 (2), p.1490-1498 |
issn | 1936-0851 1936-086X |
language | eng |
recordid | cdi_proquest_miscellaneous_2160150376 |
source | ACS Publications |
title | In Situ Self-Formed Nanosheet MoS3/Reduced Graphene Oxide Material Showing Superior Performance as a Lithium-Ion Battery Cathode |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T12%3A30%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_acs_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20Situ%20Self-Formed%20Nanosheet%20MoS3/Reduced%20Graphene%20Oxide%20Material%20Showing%20Superior%20Performance%20as%20a%20Lithium-Ion%20Battery%20Cathode&rft.jtitle=ACS%20nano&rft.au=Chang,%20Uijin&rft.date=2019-02-26&rft.volume=13&rft.issue=2&rft.spage=1490&rft.epage=1498&rft.pages=1490-1498&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/acsnano.8b07191&rft_dat=%3Cproquest_acs_j%3E2160150376%3C/proquest_acs_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2160150376&rft_id=info:pmid/&rfr_iscdi=true |