Structural characterization of VapB46 antitoxin from Mycobacterium tuberculosis: insights into VapB46–DNA binding

The ability to form persister cells by Mycobacterium tuberculosis (Mtb) is a prime cause for the emergence of drug‐resistant strains. A large number of toxin–antitoxin systems in the Mtb genome are postulated to promote bacterial persistence. The largest family of toxin–antitoxin systems encoded in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The FEBS journal 2019-03, Vol.286 (6), p.1174-1190
Hauptverfasser: Roy, Madhurima, Kundu, Anirban, Bhunia, Anirban, Das Gupta, Sujoy, De, Soumya, Das, Amit Kumar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1190
container_issue 6
container_start_page 1174
container_title The FEBS journal
container_volume 286
creator Roy, Madhurima
Kundu, Anirban
Bhunia, Anirban
Das Gupta, Sujoy
De, Soumya
Das, Amit Kumar
description The ability to form persister cells by Mycobacterium tuberculosis (Mtb) is a prime cause for the emergence of drug‐resistant strains. A large number of toxin–antitoxin systems in the Mtb genome are postulated to promote bacterial persistence. The largest family of toxin–antitoxin systems encoded in the genome of Mtb is VapBC, with 47 VapBC toxin–antitoxin systems regulated by VapB antitoxins. In this study, we characterized the structure of VapB46 antitoxin and determined its interaction with its cognate DNA sequence. Using electrophoretic mobility shift assay and DNase I footprinting we showed that VapB46 binds to two sites in the upstream promoter–operator region. Using nuclear magnetic resonance (NMR)‐based structural studies we found that VapB46 has a well‐folded dimeric N‐terminal domain, which contains a Phd/YefM motif and is involved in DNA binding. The remaining C‐terminal residues are disordered but promote higher order oligomerization of VapB46. We propose a DNA‐binding model in which tetrameric VapB46 binds to the two sites in its promoter–operator region, with each site bound by its dimeric N‐terminal domain. This study characterizes the DNA binding specificity of mycobacterial VapB46 antitoxin from the VapBC46 toxin–antitoxin (TA) operon. VapB46 binds to the promoter–operator region in the upstream DNA sequence through its dimeric N‐terminal domain and regulates the VapBC TA operon, thus providing an insight into the transcriptional regulation of the VapBC46 TA operon.
doi_str_mv 10.1111/febs.14737
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2159984266</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2193302584</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3937-108cb8d3e861431d5dfb4d5019b27c2aa890092f1492e401fc36b0fd69375e53</originalsourceid><addsrcrecordid>eNp90blOHTEUBmArAoUlaXgAZIkmQrrEHi8zpgPCJhFSgKJ0I9tjg9HM-OJFyU2Vd-ANeRJM5kJBgRuf4ju_LP8AbGG0h8v5ao2Ke5jWpP4A1nFNqxnlrFl5nemvNbAR4x1ChFEhPoI1gljNEWfrIF6lkHXKQfZQ38ogdTLB_ZXJ-RF6C3_K-SHlUI7JJf_HjdAGP8DvC-3VRPMAU1Ym6Nz76OI-dGN0N7cpliH55f7jv4dvlwdQubFz480nsGplH83n5b0Jrk-Or4_OZhc_Ts-PDi5mmghSzzBqtGo6YhqOKcEd66yiHUNYqKrWlZSNQEhUFlNRGYqw1YQrZDtelplhZBN8mWLnwd9nE1M7uKhN38vR-BzbCjMhGlpxXujOG3rncxjL44oShKCKNbSo3Unp4GMMxrbz4AYZFi1G7XMT7XMT7f8mCt5eRmY1mO6Vvnx9AXgCv11vFu9EtSfHh1dT6BNfdJRk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2193302584</pqid></control><display><type>article</type><title>Structural characterization of VapB46 antitoxin from Mycobacterium tuberculosis: insights into VapB46–DNA binding</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Wiley Free Content</source><source>Free Full-Text Journals in Chemistry</source><creator>Roy, Madhurima ; Kundu, Anirban ; Bhunia, Anirban ; Das Gupta, Sujoy ; De, Soumya ; Das, Amit Kumar</creator><creatorcontrib>Roy, Madhurima ; Kundu, Anirban ; Bhunia, Anirban ; Das Gupta, Sujoy ; De, Soumya ; Das, Amit Kumar</creatorcontrib><description>The ability to form persister cells by Mycobacterium tuberculosis (Mtb) is a prime cause for the emergence of drug‐resistant strains. A large number of toxin–antitoxin systems in the Mtb genome are postulated to promote bacterial persistence. The largest family of toxin–antitoxin systems encoded in the genome of Mtb is VapBC, with 47 VapBC toxin–antitoxin systems regulated by VapB antitoxins. In this study, we characterized the structure of VapB46 antitoxin and determined its interaction with its cognate DNA sequence. Using electrophoretic mobility shift assay and DNase I footprinting we showed that VapB46 binds to two sites in the upstream promoter–operator region. Using nuclear magnetic resonance (NMR)‐based structural studies we found that VapB46 has a well‐folded dimeric N‐terminal domain, which contains a Phd/YefM motif and is involved in DNA binding. The remaining C‐terminal residues are disordered but promote higher order oligomerization of VapB46. We propose a DNA‐binding model in which tetrameric VapB46 binds to the two sites in its promoter–operator region, with each site bound by its dimeric N‐terminal domain. This study characterizes the DNA binding specificity of mycobacterial VapB46 antitoxin from the VapBC46 toxin–antitoxin (TA) operon. VapB46 binds to the promoter–operator region in the upstream DNA sequence through its dimeric N‐terminal domain and regulates the VapBC TA operon, thus providing an insight into the transcriptional regulation of the VapBC46 TA operon.</description><identifier>ISSN: 1742-464X</identifier><identifier>EISSN: 1742-4658</identifier><identifier>DOI: 10.1111/febs.14737</identifier><identifier>PMID: 30576065</identifier><language>eng</language><publisher>England: Blackwell Publishing Ltd</publisher><subject>Amino Acid Sequence ; Antitoxins ; Antitoxins - chemistry ; Antitoxins - genetics ; Antitoxins - metabolism ; Bacterial Proteins - chemistry ; Bacterial Proteins - genetics ; Bacterial Proteins - metabolism ; Bacterial Toxins - chemistry ; Bacterial Toxins - genetics ; Bacterial Toxins - metabolism ; Binding ; Binding Sites ; Deoxyribonuclease ; Deoxyribonucleic acid ; Dimers ; DNA ; DNA, Bacterial - metabolism ; DNA-Binding Proteins - chemistry ; DNA-Binding Proteins - genetics ; DNA-Binding Proteins - metabolism ; Electrophoretic mobility ; Footprinting ; Genomes ; Membrane Glycoproteins - chemistry ; Membrane Glycoproteins - genetics ; Membrane Glycoproteins - metabolism ; Models, Molecular ; Mycobacterium tuberculosis ; Mycobacterium tuberculosis - genetics ; Mycobacterium tuberculosis - growth &amp; development ; Mycobacterium tuberculosis - metabolism ; NMR ; NMR spectroscopy ; Nuclear magnetic resonance ; Nucleotide sequence ; Oligomerization ; Operon - physiology ; Phd/YefM ; Promoter Regions, Genetic ; Protein Binding ; Protein Structure, Tertiary ; protein–DNA interaction ; Sequence Homology ; Structural analysis ; toxin–antitoxin ; Tuberculosis ; virulence‐associated protein</subject><ispartof>The FEBS journal, 2019-03, Vol.286 (6), p.1174-1190</ispartof><rights>2018 Federation of European Biochemical Societies</rights><rights>2018 Federation of European Biochemical Societies.</rights><rights>Copyright © 2019 Federation of European Biochemical Societies</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3937-108cb8d3e861431d5dfb4d5019b27c2aa890092f1492e401fc36b0fd69375e53</citedby><cites>FETCH-LOGICAL-c3937-108cb8d3e861431d5dfb4d5019b27c2aa890092f1492e401fc36b0fd69375e53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Ffebs.14737$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Ffebs.14737$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,1427,27903,27904,45553,45554,46387,46811</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30576065$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Roy, Madhurima</creatorcontrib><creatorcontrib>Kundu, Anirban</creatorcontrib><creatorcontrib>Bhunia, Anirban</creatorcontrib><creatorcontrib>Das Gupta, Sujoy</creatorcontrib><creatorcontrib>De, Soumya</creatorcontrib><creatorcontrib>Das, Amit Kumar</creatorcontrib><title>Structural characterization of VapB46 antitoxin from Mycobacterium tuberculosis: insights into VapB46–DNA binding</title><title>The FEBS journal</title><addtitle>FEBS J</addtitle><description>The ability to form persister cells by Mycobacterium tuberculosis (Mtb) is a prime cause for the emergence of drug‐resistant strains. A large number of toxin–antitoxin systems in the Mtb genome are postulated to promote bacterial persistence. The largest family of toxin–antitoxin systems encoded in the genome of Mtb is VapBC, with 47 VapBC toxin–antitoxin systems regulated by VapB antitoxins. In this study, we characterized the structure of VapB46 antitoxin and determined its interaction with its cognate DNA sequence. Using electrophoretic mobility shift assay and DNase I footprinting we showed that VapB46 binds to two sites in the upstream promoter–operator region. Using nuclear magnetic resonance (NMR)‐based structural studies we found that VapB46 has a well‐folded dimeric N‐terminal domain, which contains a Phd/YefM motif and is involved in DNA binding. The remaining C‐terminal residues are disordered but promote higher order oligomerization of VapB46. We propose a DNA‐binding model in which tetrameric VapB46 binds to the two sites in its promoter–operator region, with each site bound by its dimeric N‐terminal domain. This study characterizes the DNA binding specificity of mycobacterial VapB46 antitoxin from the VapBC46 toxin–antitoxin (TA) operon. VapB46 binds to the promoter–operator region in the upstream DNA sequence through its dimeric N‐terminal domain and regulates the VapBC TA operon, thus providing an insight into the transcriptional regulation of the VapBC46 TA operon.</description><subject>Amino Acid Sequence</subject><subject>Antitoxins</subject><subject>Antitoxins - chemistry</subject><subject>Antitoxins - genetics</subject><subject>Antitoxins - metabolism</subject><subject>Bacterial Proteins - chemistry</subject><subject>Bacterial Proteins - genetics</subject><subject>Bacterial Proteins - metabolism</subject><subject>Bacterial Toxins - chemistry</subject><subject>Bacterial Toxins - genetics</subject><subject>Bacterial Toxins - metabolism</subject><subject>Binding</subject><subject>Binding Sites</subject><subject>Deoxyribonuclease</subject><subject>Deoxyribonucleic acid</subject><subject>Dimers</subject><subject>DNA</subject><subject>DNA, Bacterial - metabolism</subject><subject>DNA-Binding Proteins - chemistry</subject><subject>DNA-Binding Proteins - genetics</subject><subject>DNA-Binding Proteins - metabolism</subject><subject>Electrophoretic mobility</subject><subject>Footprinting</subject><subject>Genomes</subject><subject>Membrane Glycoproteins - chemistry</subject><subject>Membrane Glycoproteins - genetics</subject><subject>Membrane Glycoproteins - metabolism</subject><subject>Models, Molecular</subject><subject>Mycobacterium tuberculosis</subject><subject>Mycobacterium tuberculosis - genetics</subject><subject>Mycobacterium tuberculosis - growth &amp; development</subject><subject>Mycobacterium tuberculosis - metabolism</subject><subject>NMR</subject><subject>NMR spectroscopy</subject><subject>Nuclear magnetic resonance</subject><subject>Nucleotide sequence</subject><subject>Oligomerization</subject><subject>Operon - physiology</subject><subject>Phd/YefM</subject><subject>Promoter Regions, Genetic</subject><subject>Protein Binding</subject><subject>Protein Structure, Tertiary</subject><subject>protein–DNA interaction</subject><subject>Sequence Homology</subject><subject>Structural analysis</subject><subject>toxin–antitoxin</subject><subject>Tuberculosis</subject><subject>virulence‐associated protein</subject><issn>1742-464X</issn><issn>1742-4658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp90blOHTEUBmArAoUlaXgAZIkmQrrEHi8zpgPCJhFSgKJ0I9tjg9HM-OJFyU2Vd-ANeRJM5kJBgRuf4ju_LP8AbGG0h8v5ao2Ke5jWpP4A1nFNqxnlrFl5nemvNbAR4x1ChFEhPoI1gljNEWfrIF6lkHXKQfZQ38ogdTLB_ZXJ-RF6C3_K-SHlUI7JJf_HjdAGP8DvC-3VRPMAU1Ym6Nz76OI-dGN0N7cpliH55f7jv4dvlwdQubFz480nsGplH83n5b0Jrk-Or4_OZhc_Ts-PDi5mmghSzzBqtGo6YhqOKcEd66yiHUNYqKrWlZSNQEhUFlNRGYqw1YQrZDtelplhZBN8mWLnwd9nE1M7uKhN38vR-BzbCjMhGlpxXujOG3rncxjL44oShKCKNbSo3Unp4GMMxrbz4AYZFi1G7XMT7XMT7f8mCt5eRmY1mO6Vvnx9AXgCv11vFu9EtSfHh1dT6BNfdJRk</recordid><startdate>201903</startdate><enddate>201903</enddate><creator>Roy, Madhurima</creator><creator>Kundu, Anirban</creator><creator>Bhunia, Anirban</creator><creator>Das Gupta, Sujoy</creator><creator>De, Soumya</creator><creator>Das, Amit Kumar</creator><general>Blackwell Publishing Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>201903</creationdate><title>Structural characterization of VapB46 antitoxin from Mycobacterium tuberculosis: insights into VapB46–DNA binding</title><author>Roy, Madhurima ; Kundu, Anirban ; Bhunia, Anirban ; Das Gupta, Sujoy ; De, Soumya ; Das, Amit Kumar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3937-108cb8d3e861431d5dfb4d5019b27c2aa890092f1492e401fc36b0fd69375e53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Amino Acid Sequence</topic><topic>Antitoxins</topic><topic>Antitoxins - chemistry</topic><topic>Antitoxins - genetics</topic><topic>Antitoxins - metabolism</topic><topic>Bacterial Proteins - chemistry</topic><topic>Bacterial Proteins - genetics</topic><topic>Bacterial Proteins - metabolism</topic><topic>Bacterial Toxins - chemistry</topic><topic>Bacterial Toxins - genetics</topic><topic>Bacterial Toxins - metabolism</topic><topic>Binding</topic><topic>Binding Sites</topic><topic>Deoxyribonuclease</topic><topic>Deoxyribonucleic acid</topic><topic>Dimers</topic><topic>DNA</topic><topic>DNA, Bacterial - metabolism</topic><topic>DNA-Binding Proteins - chemistry</topic><topic>DNA-Binding Proteins - genetics</topic><topic>DNA-Binding Proteins - metabolism</topic><topic>Electrophoretic mobility</topic><topic>Footprinting</topic><topic>Genomes</topic><topic>Membrane Glycoproteins - chemistry</topic><topic>Membrane Glycoproteins - genetics</topic><topic>Membrane Glycoproteins - metabolism</topic><topic>Models, Molecular</topic><topic>Mycobacterium tuberculosis</topic><topic>Mycobacterium tuberculosis - genetics</topic><topic>Mycobacterium tuberculosis - growth &amp; development</topic><topic>Mycobacterium tuberculosis - metabolism</topic><topic>NMR</topic><topic>NMR spectroscopy</topic><topic>Nuclear magnetic resonance</topic><topic>Nucleotide sequence</topic><topic>Oligomerization</topic><topic>Operon - physiology</topic><topic>Phd/YefM</topic><topic>Promoter Regions, Genetic</topic><topic>Protein Binding</topic><topic>Protein Structure, Tertiary</topic><topic>protein–DNA interaction</topic><topic>Sequence Homology</topic><topic>Structural analysis</topic><topic>toxin–antitoxin</topic><topic>Tuberculosis</topic><topic>virulence‐associated protein</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Roy, Madhurima</creatorcontrib><creatorcontrib>Kundu, Anirban</creatorcontrib><creatorcontrib>Bhunia, Anirban</creatorcontrib><creatorcontrib>Das Gupta, Sujoy</creatorcontrib><creatorcontrib>De, Soumya</creatorcontrib><creatorcontrib>Das, Amit Kumar</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>The FEBS journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Roy, Madhurima</au><au>Kundu, Anirban</au><au>Bhunia, Anirban</au><au>Das Gupta, Sujoy</au><au>De, Soumya</au><au>Das, Amit Kumar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural characterization of VapB46 antitoxin from Mycobacterium tuberculosis: insights into VapB46–DNA binding</atitle><jtitle>The FEBS journal</jtitle><addtitle>FEBS J</addtitle><date>2019-03</date><risdate>2019</risdate><volume>286</volume><issue>6</issue><spage>1174</spage><epage>1190</epage><pages>1174-1190</pages><issn>1742-464X</issn><eissn>1742-4658</eissn><abstract>The ability to form persister cells by Mycobacterium tuberculosis (Mtb) is a prime cause for the emergence of drug‐resistant strains. A large number of toxin–antitoxin systems in the Mtb genome are postulated to promote bacterial persistence. The largest family of toxin–antitoxin systems encoded in the genome of Mtb is VapBC, with 47 VapBC toxin–antitoxin systems regulated by VapB antitoxins. In this study, we characterized the structure of VapB46 antitoxin and determined its interaction with its cognate DNA sequence. Using electrophoretic mobility shift assay and DNase I footprinting we showed that VapB46 binds to two sites in the upstream promoter–operator region. Using nuclear magnetic resonance (NMR)‐based structural studies we found that VapB46 has a well‐folded dimeric N‐terminal domain, which contains a Phd/YefM motif and is involved in DNA binding. The remaining C‐terminal residues are disordered but promote higher order oligomerization of VapB46. We propose a DNA‐binding model in which tetrameric VapB46 binds to the two sites in its promoter–operator region, with each site bound by its dimeric N‐terminal domain. This study characterizes the DNA binding specificity of mycobacterial VapB46 antitoxin from the VapBC46 toxin–antitoxin (TA) operon. VapB46 binds to the promoter–operator region in the upstream DNA sequence through its dimeric N‐terminal domain and regulates the VapBC TA operon, thus providing an insight into the transcriptional regulation of the VapBC46 TA operon.</abstract><cop>England</cop><pub>Blackwell Publishing Ltd</pub><pmid>30576065</pmid><doi>10.1111/febs.14737</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1742-464X
ispartof The FEBS journal, 2019-03, Vol.286 (6), p.1174-1190
issn 1742-464X
1742-4658
language eng
recordid cdi_proquest_miscellaneous_2159984266
source MEDLINE; Wiley Online Library Journals Frontfile Complete; Wiley Free Content; Free Full-Text Journals in Chemistry
subjects Amino Acid Sequence
Antitoxins
Antitoxins - chemistry
Antitoxins - genetics
Antitoxins - metabolism
Bacterial Proteins - chemistry
Bacterial Proteins - genetics
Bacterial Proteins - metabolism
Bacterial Toxins - chemistry
Bacterial Toxins - genetics
Bacterial Toxins - metabolism
Binding
Binding Sites
Deoxyribonuclease
Deoxyribonucleic acid
Dimers
DNA
DNA, Bacterial - metabolism
DNA-Binding Proteins - chemistry
DNA-Binding Proteins - genetics
DNA-Binding Proteins - metabolism
Electrophoretic mobility
Footprinting
Genomes
Membrane Glycoproteins - chemistry
Membrane Glycoproteins - genetics
Membrane Glycoproteins - metabolism
Models, Molecular
Mycobacterium tuberculosis
Mycobacterium tuberculosis - genetics
Mycobacterium tuberculosis - growth & development
Mycobacterium tuberculosis - metabolism
NMR
NMR spectroscopy
Nuclear magnetic resonance
Nucleotide sequence
Oligomerization
Operon - physiology
Phd/YefM
Promoter Regions, Genetic
Protein Binding
Protein Structure, Tertiary
protein–DNA interaction
Sequence Homology
Structural analysis
toxin–antitoxin
Tuberculosis
virulence‐associated protein
title Structural characterization of VapB46 antitoxin from Mycobacterium tuberculosis: insights into VapB46–DNA binding
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T03%3A59%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20characterization%20of%20VapB46%20antitoxin%20from%20Mycobacterium%20tuberculosis:%20insights%20into%20VapB46%E2%80%93DNA%20binding&rft.jtitle=The%20FEBS%20journal&rft.au=Roy,%20Madhurima&rft.date=2019-03&rft.volume=286&rft.issue=6&rft.spage=1174&rft.epage=1190&rft.pages=1174-1190&rft.issn=1742-464X&rft.eissn=1742-4658&rft_id=info:doi/10.1111/febs.14737&rft_dat=%3Cproquest_cross%3E2193302584%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2193302584&rft_id=info:pmid/30576065&rfr_iscdi=true