Structural characterization of VapB46 antitoxin from Mycobacterium tuberculosis: insights into VapB46–DNA binding
The ability to form persister cells by Mycobacterium tuberculosis (Mtb) is a prime cause for the emergence of drug‐resistant strains. A large number of toxin–antitoxin systems in the Mtb genome are postulated to promote bacterial persistence. The largest family of toxin–antitoxin systems encoded in...
Gespeichert in:
Veröffentlicht in: | The FEBS journal 2019-03, Vol.286 (6), p.1174-1190 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1190 |
---|---|
container_issue | 6 |
container_start_page | 1174 |
container_title | The FEBS journal |
container_volume | 286 |
creator | Roy, Madhurima Kundu, Anirban Bhunia, Anirban Das Gupta, Sujoy De, Soumya Das, Amit Kumar |
description | The ability to form persister cells by Mycobacterium tuberculosis (Mtb) is a prime cause for the emergence of drug‐resistant strains. A large number of toxin–antitoxin systems in the Mtb genome are postulated to promote bacterial persistence. The largest family of toxin–antitoxin systems encoded in the genome of Mtb is VapBC, with 47 VapBC toxin–antitoxin systems regulated by VapB antitoxins. In this study, we characterized the structure of VapB46 antitoxin and determined its interaction with its cognate DNA sequence. Using electrophoretic mobility shift assay and DNase I footprinting we showed that VapB46 binds to two sites in the upstream promoter–operator region. Using nuclear magnetic resonance (NMR)‐based structural studies we found that VapB46 has a well‐folded dimeric N‐terminal domain, which contains a Phd/YefM motif and is involved in DNA binding. The remaining C‐terminal residues are disordered but promote higher order oligomerization of VapB46. We propose a DNA‐binding model in which tetrameric VapB46 binds to the two sites in its promoter–operator region, with each site bound by its dimeric N‐terminal domain.
This study characterizes the DNA binding specificity of mycobacterial VapB46 antitoxin from the VapBC46 toxin–antitoxin (TA) operon. VapB46 binds to the promoter–operator region in the upstream DNA sequence through its dimeric N‐terminal domain and regulates the VapBC TA operon, thus providing an insight into the transcriptional regulation of the VapBC46 TA operon. |
doi_str_mv | 10.1111/febs.14737 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2159984266</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2193302584</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3937-108cb8d3e861431d5dfb4d5019b27c2aa890092f1492e401fc36b0fd69375e53</originalsourceid><addsrcrecordid>eNp90blOHTEUBmArAoUlaXgAZIkmQrrEHi8zpgPCJhFSgKJ0I9tjg9HM-OJFyU2Vd-ANeRJM5kJBgRuf4ju_LP8AbGG0h8v5ao2Ke5jWpP4A1nFNqxnlrFl5nemvNbAR4x1ChFEhPoI1gljNEWfrIF6lkHXKQfZQ38ogdTLB_ZXJ-RF6C3_K-SHlUI7JJf_HjdAGP8DvC-3VRPMAU1Ym6Nz76OI-dGN0N7cpliH55f7jv4dvlwdQubFz480nsGplH83n5b0Jrk-Or4_OZhc_Ts-PDi5mmghSzzBqtGo6YhqOKcEd66yiHUNYqKrWlZSNQEhUFlNRGYqw1YQrZDtelplhZBN8mWLnwd9nE1M7uKhN38vR-BzbCjMhGlpxXujOG3rncxjL44oShKCKNbSo3Unp4GMMxrbz4AYZFi1G7XMT7XMT7f8mCt5eRmY1mO6Vvnx9AXgCv11vFu9EtSfHh1dT6BNfdJRk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2193302584</pqid></control><display><type>article</type><title>Structural characterization of VapB46 antitoxin from Mycobacterium tuberculosis: insights into VapB46–DNA binding</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Wiley Free Content</source><source>Free Full-Text Journals in Chemistry</source><creator>Roy, Madhurima ; Kundu, Anirban ; Bhunia, Anirban ; Das Gupta, Sujoy ; De, Soumya ; Das, Amit Kumar</creator><creatorcontrib>Roy, Madhurima ; Kundu, Anirban ; Bhunia, Anirban ; Das Gupta, Sujoy ; De, Soumya ; Das, Amit Kumar</creatorcontrib><description>The ability to form persister cells by Mycobacterium tuberculosis (Mtb) is a prime cause for the emergence of drug‐resistant strains. A large number of toxin–antitoxin systems in the Mtb genome are postulated to promote bacterial persistence. The largest family of toxin–antitoxin systems encoded in the genome of Mtb is VapBC, with 47 VapBC toxin–antitoxin systems regulated by VapB antitoxins. In this study, we characterized the structure of VapB46 antitoxin and determined its interaction with its cognate DNA sequence. Using electrophoretic mobility shift assay and DNase I footprinting we showed that VapB46 binds to two sites in the upstream promoter–operator region. Using nuclear magnetic resonance (NMR)‐based structural studies we found that VapB46 has a well‐folded dimeric N‐terminal domain, which contains a Phd/YefM motif and is involved in DNA binding. The remaining C‐terminal residues are disordered but promote higher order oligomerization of VapB46. We propose a DNA‐binding model in which tetrameric VapB46 binds to the two sites in its promoter–operator region, with each site bound by its dimeric N‐terminal domain.
This study characterizes the DNA binding specificity of mycobacterial VapB46 antitoxin from the VapBC46 toxin–antitoxin (TA) operon. VapB46 binds to the promoter–operator region in the upstream DNA sequence through its dimeric N‐terminal domain and regulates the VapBC TA operon, thus providing an insight into the transcriptional regulation of the VapBC46 TA operon.</description><identifier>ISSN: 1742-464X</identifier><identifier>EISSN: 1742-4658</identifier><identifier>DOI: 10.1111/febs.14737</identifier><identifier>PMID: 30576065</identifier><language>eng</language><publisher>England: Blackwell Publishing Ltd</publisher><subject>Amino Acid Sequence ; Antitoxins ; Antitoxins - chemistry ; Antitoxins - genetics ; Antitoxins - metabolism ; Bacterial Proteins - chemistry ; Bacterial Proteins - genetics ; Bacterial Proteins - metabolism ; Bacterial Toxins - chemistry ; Bacterial Toxins - genetics ; Bacterial Toxins - metabolism ; Binding ; Binding Sites ; Deoxyribonuclease ; Deoxyribonucleic acid ; Dimers ; DNA ; DNA, Bacterial - metabolism ; DNA-Binding Proteins - chemistry ; DNA-Binding Proteins - genetics ; DNA-Binding Proteins - metabolism ; Electrophoretic mobility ; Footprinting ; Genomes ; Membrane Glycoproteins - chemistry ; Membrane Glycoproteins - genetics ; Membrane Glycoproteins - metabolism ; Models, Molecular ; Mycobacterium tuberculosis ; Mycobacterium tuberculosis - genetics ; Mycobacterium tuberculosis - growth & development ; Mycobacterium tuberculosis - metabolism ; NMR ; NMR spectroscopy ; Nuclear magnetic resonance ; Nucleotide sequence ; Oligomerization ; Operon - physiology ; Phd/YefM ; Promoter Regions, Genetic ; Protein Binding ; Protein Structure, Tertiary ; protein–DNA interaction ; Sequence Homology ; Structural analysis ; toxin–antitoxin ; Tuberculosis ; virulence‐associated protein</subject><ispartof>The FEBS journal, 2019-03, Vol.286 (6), p.1174-1190</ispartof><rights>2018 Federation of European Biochemical Societies</rights><rights>2018 Federation of European Biochemical Societies.</rights><rights>Copyright © 2019 Federation of European Biochemical Societies</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3937-108cb8d3e861431d5dfb4d5019b27c2aa890092f1492e401fc36b0fd69375e53</citedby><cites>FETCH-LOGICAL-c3937-108cb8d3e861431d5dfb4d5019b27c2aa890092f1492e401fc36b0fd69375e53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Ffebs.14737$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Ffebs.14737$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,1427,27903,27904,45553,45554,46387,46811</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30576065$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Roy, Madhurima</creatorcontrib><creatorcontrib>Kundu, Anirban</creatorcontrib><creatorcontrib>Bhunia, Anirban</creatorcontrib><creatorcontrib>Das Gupta, Sujoy</creatorcontrib><creatorcontrib>De, Soumya</creatorcontrib><creatorcontrib>Das, Amit Kumar</creatorcontrib><title>Structural characterization of VapB46 antitoxin from Mycobacterium tuberculosis: insights into VapB46–DNA binding</title><title>The FEBS journal</title><addtitle>FEBS J</addtitle><description>The ability to form persister cells by Mycobacterium tuberculosis (Mtb) is a prime cause for the emergence of drug‐resistant strains. A large number of toxin–antitoxin systems in the Mtb genome are postulated to promote bacterial persistence. The largest family of toxin–antitoxin systems encoded in the genome of Mtb is VapBC, with 47 VapBC toxin–antitoxin systems regulated by VapB antitoxins. In this study, we characterized the structure of VapB46 antitoxin and determined its interaction with its cognate DNA sequence. Using electrophoretic mobility shift assay and DNase I footprinting we showed that VapB46 binds to two sites in the upstream promoter–operator region. Using nuclear magnetic resonance (NMR)‐based structural studies we found that VapB46 has a well‐folded dimeric N‐terminal domain, which contains a Phd/YefM motif and is involved in DNA binding. The remaining C‐terminal residues are disordered but promote higher order oligomerization of VapB46. We propose a DNA‐binding model in which tetrameric VapB46 binds to the two sites in its promoter–operator region, with each site bound by its dimeric N‐terminal domain.
This study characterizes the DNA binding specificity of mycobacterial VapB46 antitoxin from the VapBC46 toxin–antitoxin (TA) operon. VapB46 binds to the promoter–operator region in the upstream DNA sequence through its dimeric N‐terminal domain and regulates the VapBC TA operon, thus providing an insight into the transcriptional regulation of the VapBC46 TA operon.</description><subject>Amino Acid Sequence</subject><subject>Antitoxins</subject><subject>Antitoxins - chemistry</subject><subject>Antitoxins - genetics</subject><subject>Antitoxins - metabolism</subject><subject>Bacterial Proteins - chemistry</subject><subject>Bacterial Proteins - genetics</subject><subject>Bacterial Proteins - metabolism</subject><subject>Bacterial Toxins - chemistry</subject><subject>Bacterial Toxins - genetics</subject><subject>Bacterial Toxins - metabolism</subject><subject>Binding</subject><subject>Binding Sites</subject><subject>Deoxyribonuclease</subject><subject>Deoxyribonucleic acid</subject><subject>Dimers</subject><subject>DNA</subject><subject>DNA, Bacterial - metabolism</subject><subject>DNA-Binding Proteins - chemistry</subject><subject>DNA-Binding Proteins - genetics</subject><subject>DNA-Binding Proteins - metabolism</subject><subject>Electrophoretic mobility</subject><subject>Footprinting</subject><subject>Genomes</subject><subject>Membrane Glycoproteins - chemistry</subject><subject>Membrane Glycoproteins - genetics</subject><subject>Membrane Glycoproteins - metabolism</subject><subject>Models, Molecular</subject><subject>Mycobacterium tuberculosis</subject><subject>Mycobacterium tuberculosis - genetics</subject><subject>Mycobacterium tuberculosis - growth & development</subject><subject>Mycobacterium tuberculosis - metabolism</subject><subject>NMR</subject><subject>NMR spectroscopy</subject><subject>Nuclear magnetic resonance</subject><subject>Nucleotide sequence</subject><subject>Oligomerization</subject><subject>Operon - physiology</subject><subject>Phd/YefM</subject><subject>Promoter Regions, Genetic</subject><subject>Protein Binding</subject><subject>Protein Structure, Tertiary</subject><subject>protein–DNA interaction</subject><subject>Sequence Homology</subject><subject>Structural analysis</subject><subject>toxin–antitoxin</subject><subject>Tuberculosis</subject><subject>virulence‐associated protein</subject><issn>1742-464X</issn><issn>1742-4658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp90blOHTEUBmArAoUlaXgAZIkmQrrEHi8zpgPCJhFSgKJ0I9tjg9HM-OJFyU2Vd-ANeRJM5kJBgRuf4ju_LP8AbGG0h8v5ao2Ke5jWpP4A1nFNqxnlrFl5nemvNbAR4x1ChFEhPoI1gljNEWfrIF6lkHXKQfZQ38ogdTLB_ZXJ-RF6C3_K-SHlUI7JJf_HjdAGP8DvC-3VRPMAU1Ym6Nz76OI-dGN0N7cpliH55f7jv4dvlwdQubFz480nsGplH83n5b0Jrk-Or4_OZhc_Ts-PDi5mmghSzzBqtGo6YhqOKcEd66yiHUNYqKrWlZSNQEhUFlNRGYqw1YQrZDtelplhZBN8mWLnwd9nE1M7uKhN38vR-BzbCjMhGlpxXujOG3rncxjL44oShKCKNbSo3Unp4GMMxrbz4AYZFi1G7XMT7XMT7f8mCt5eRmY1mO6Vvnx9AXgCv11vFu9EtSfHh1dT6BNfdJRk</recordid><startdate>201903</startdate><enddate>201903</enddate><creator>Roy, Madhurima</creator><creator>Kundu, Anirban</creator><creator>Bhunia, Anirban</creator><creator>Das Gupta, Sujoy</creator><creator>De, Soumya</creator><creator>Das, Amit Kumar</creator><general>Blackwell Publishing Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>201903</creationdate><title>Structural characterization of VapB46 antitoxin from Mycobacterium tuberculosis: insights into VapB46–DNA binding</title><author>Roy, Madhurima ; Kundu, Anirban ; Bhunia, Anirban ; Das Gupta, Sujoy ; De, Soumya ; Das, Amit Kumar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3937-108cb8d3e861431d5dfb4d5019b27c2aa890092f1492e401fc36b0fd69375e53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Amino Acid Sequence</topic><topic>Antitoxins</topic><topic>Antitoxins - chemistry</topic><topic>Antitoxins - genetics</topic><topic>Antitoxins - metabolism</topic><topic>Bacterial Proteins - chemistry</topic><topic>Bacterial Proteins - genetics</topic><topic>Bacterial Proteins - metabolism</topic><topic>Bacterial Toxins - chemistry</topic><topic>Bacterial Toxins - genetics</topic><topic>Bacterial Toxins - metabolism</topic><topic>Binding</topic><topic>Binding Sites</topic><topic>Deoxyribonuclease</topic><topic>Deoxyribonucleic acid</topic><topic>Dimers</topic><topic>DNA</topic><topic>DNA, Bacterial - metabolism</topic><topic>DNA-Binding Proteins - chemistry</topic><topic>DNA-Binding Proteins - genetics</topic><topic>DNA-Binding Proteins - metabolism</topic><topic>Electrophoretic mobility</topic><topic>Footprinting</topic><topic>Genomes</topic><topic>Membrane Glycoproteins - chemistry</topic><topic>Membrane Glycoproteins - genetics</topic><topic>Membrane Glycoproteins - metabolism</topic><topic>Models, Molecular</topic><topic>Mycobacterium tuberculosis</topic><topic>Mycobacterium tuberculosis - genetics</topic><topic>Mycobacterium tuberculosis - growth & development</topic><topic>Mycobacterium tuberculosis - metabolism</topic><topic>NMR</topic><topic>NMR spectroscopy</topic><topic>Nuclear magnetic resonance</topic><topic>Nucleotide sequence</topic><topic>Oligomerization</topic><topic>Operon - physiology</topic><topic>Phd/YefM</topic><topic>Promoter Regions, Genetic</topic><topic>Protein Binding</topic><topic>Protein Structure, Tertiary</topic><topic>protein–DNA interaction</topic><topic>Sequence Homology</topic><topic>Structural analysis</topic><topic>toxin–antitoxin</topic><topic>Tuberculosis</topic><topic>virulence‐associated protein</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Roy, Madhurima</creatorcontrib><creatorcontrib>Kundu, Anirban</creatorcontrib><creatorcontrib>Bhunia, Anirban</creatorcontrib><creatorcontrib>Das Gupta, Sujoy</creatorcontrib><creatorcontrib>De, Soumya</creatorcontrib><creatorcontrib>Das, Amit Kumar</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>The FEBS journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Roy, Madhurima</au><au>Kundu, Anirban</au><au>Bhunia, Anirban</au><au>Das Gupta, Sujoy</au><au>De, Soumya</au><au>Das, Amit Kumar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural characterization of VapB46 antitoxin from Mycobacterium tuberculosis: insights into VapB46–DNA binding</atitle><jtitle>The FEBS journal</jtitle><addtitle>FEBS J</addtitle><date>2019-03</date><risdate>2019</risdate><volume>286</volume><issue>6</issue><spage>1174</spage><epage>1190</epage><pages>1174-1190</pages><issn>1742-464X</issn><eissn>1742-4658</eissn><abstract>The ability to form persister cells by Mycobacterium tuberculosis (Mtb) is a prime cause for the emergence of drug‐resistant strains. A large number of toxin–antitoxin systems in the Mtb genome are postulated to promote bacterial persistence. The largest family of toxin–antitoxin systems encoded in the genome of Mtb is VapBC, with 47 VapBC toxin–antitoxin systems regulated by VapB antitoxins. In this study, we characterized the structure of VapB46 antitoxin and determined its interaction with its cognate DNA sequence. Using electrophoretic mobility shift assay and DNase I footprinting we showed that VapB46 binds to two sites in the upstream promoter–operator region. Using nuclear magnetic resonance (NMR)‐based structural studies we found that VapB46 has a well‐folded dimeric N‐terminal domain, which contains a Phd/YefM motif and is involved in DNA binding. The remaining C‐terminal residues are disordered but promote higher order oligomerization of VapB46. We propose a DNA‐binding model in which tetrameric VapB46 binds to the two sites in its promoter–operator region, with each site bound by its dimeric N‐terminal domain.
This study characterizes the DNA binding specificity of mycobacterial VapB46 antitoxin from the VapBC46 toxin–antitoxin (TA) operon. VapB46 binds to the promoter–operator region in the upstream DNA sequence through its dimeric N‐terminal domain and regulates the VapBC TA operon, thus providing an insight into the transcriptional regulation of the VapBC46 TA operon.</abstract><cop>England</cop><pub>Blackwell Publishing Ltd</pub><pmid>30576065</pmid><doi>10.1111/febs.14737</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1742-464X |
ispartof | The FEBS journal, 2019-03, Vol.286 (6), p.1174-1190 |
issn | 1742-464X 1742-4658 |
language | eng |
recordid | cdi_proquest_miscellaneous_2159984266 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete; Wiley Free Content; Free Full-Text Journals in Chemistry |
subjects | Amino Acid Sequence Antitoxins Antitoxins - chemistry Antitoxins - genetics Antitoxins - metabolism Bacterial Proteins - chemistry Bacterial Proteins - genetics Bacterial Proteins - metabolism Bacterial Toxins - chemistry Bacterial Toxins - genetics Bacterial Toxins - metabolism Binding Binding Sites Deoxyribonuclease Deoxyribonucleic acid Dimers DNA DNA, Bacterial - metabolism DNA-Binding Proteins - chemistry DNA-Binding Proteins - genetics DNA-Binding Proteins - metabolism Electrophoretic mobility Footprinting Genomes Membrane Glycoproteins - chemistry Membrane Glycoproteins - genetics Membrane Glycoproteins - metabolism Models, Molecular Mycobacterium tuberculosis Mycobacterium tuberculosis - genetics Mycobacterium tuberculosis - growth & development Mycobacterium tuberculosis - metabolism NMR NMR spectroscopy Nuclear magnetic resonance Nucleotide sequence Oligomerization Operon - physiology Phd/YefM Promoter Regions, Genetic Protein Binding Protein Structure, Tertiary protein–DNA interaction Sequence Homology Structural analysis toxin–antitoxin Tuberculosis virulence‐associated protein |
title | Structural characterization of VapB46 antitoxin from Mycobacterium tuberculosis: insights into VapB46–DNA binding |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T03%3A59%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20characterization%20of%20VapB46%20antitoxin%20from%20Mycobacterium%20tuberculosis:%20insights%20into%20VapB46%E2%80%93DNA%20binding&rft.jtitle=The%20FEBS%20journal&rft.au=Roy,%20Madhurima&rft.date=2019-03&rft.volume=286&rft.issue=6&rft.spage=1174&rft.epage=1190&rft.pages=1174-1190&rft.issn=1742-464X&rft.eissn=1742-4658&rft_id=info:doi/10.1111/febs.14737&rft_dat=%3Cproquest_cross%3E2193302584%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2193302584&rft_id=info:pmid/30576065&rfr_iscdi=true |