Porous N‑Doped Carbon-Encapsulated CoNi Alloy Nanoparticles Derived from MOFs as Efficient Bifunctional Oxygen Electrocatalysts

A porous N-doped carbon-encapsulated CoNi alloy nanoparticle composite (CoNi@N–C) was prepared using a bimetallic metal–organic framework composite as the precursor. The optimal prepared Co1Ni1@N–C material at 800 °C exhibited well-defined porosities, uniform CoNi alloy nanoparticle dispersion, a hi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2019-01, Vol.11 (2), p.1957-1968
Hauptverfasser: Ning, Honghui, Li, Guoqiang, Chen, Yu, Zhang, Kaikai, Gong, Zhuang, Nie, Renfeng, Hu, Wei, Xia, Qinghua
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1968
container_issue 2
container_start_page 1957
container_title ACS applied materials & interfaces
container_volume 11
creator Ning, Honghui
Li, Guoqiang
Chen, Yu
Zhang, Kaikai
Gong, Zhuang
Nie, Renfeng
Hu, Wei
Xia, Qinghua
description A porous N-doped carbon-encapsulated CoNi alloy nanoparticle composite (CoNi@N–C) was prepared using a bimetallic metal–organic framework composite as the precursor. The optimal prepared Co1Ni1@N–C material at 800 °C exhibited well-defined porosities, uniform CoNi alloy nanoparticle dispersion, a high doped-N level, and scattered CoNi–N x active sites, therefore affording excellent oxygen catalytic activities toward the reduction and evolution processes of oxygen. The oxygen reduction (ORR) onset potential (E onset) on Co1Ni1@N–C was 0.91 V and the half-wave potential (E 1/2) was 0.82 V, very close to the parameters recorded on the Pt/C (20 wt Pt%) benchmark. Moreover, it is worth noting that the ORR stability of Co1Ni1@N–C was prominently higher than that of Pt/C. Under the oxygen evolution reaction condition, Co1Ni1@N–C generated the maximum current density at the potential of 1.7 V (8.60 mA cm–2) and the earliest E onset (1.35 V) among all Co x Ni y @N–C hybrids. The Co1Ni1@N–C catalyst exhibited the smallest ΔE value, confirming the superior bifunctional activity. The high surface area and porosity, and CoNi–N x active sites on the carbon surface including the proper interactions between the N-doped C shell and CoNi nanoparticles were attributed as the main contributors to the outstanding oxygen electrocatalytic property and good stability.
doi_str_mv 10.1021/acsami.8b13290
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2159981330</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2159981330</sourcerecordid><originalsourceid>FETCH-LOGICAL-a330t-f16e4866ae40715125042b85373dfc82819b691a28ee5dcfccc730d273f372f83</originalsourceid><addsrcrecordid>eNp1kMtu2zAQRYmiQZ263XYZcFkEkMOXJGqZ2s4DSOwu2rUwosiAASWqJBXEu_YT-ov5kiiwk11WMxicewc4CH2jZEEJo2egInR2IRvKWUU-oGNaCZFJlrOPb7sQM_Q5xntCCs5I_gnNOMlLUZbiGP376YMfI948_f2_8oNu8RJC4_ts3SsY4uggvdz8xuJz5_wOb6D3A4RkldMRr3SwDxNggu_w7fYiYoh4bYxVVvcJ_7Bm7FWyvgeHt4-7O93jtdMqBa8ggdvFFL-gIwMu6q-HOUe_L9a_llfZzfbyenl-kwHnJGWGFlrIogAtSElzynIiWCNzXvLWKMkkrZqiosCk1nmrjFKq5KRlJTe8ZEbyOfq-7x2C_zPqmOrORqWdg15PBmpG86qSdHo2oYs9qoKPMWhTD8F2EHY1JfWL9nqvvT5onwInh-6x6XT7hr96noDTPTAF63s_hklIfK_tGcRFjvQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2159981330</pqid></control><display><type>article</type><title>Porous N‑Doped Carbon-Encapsulated CoNi Alloy Nanoparticles Derived from MOFs as Efficient Bifunctional Oxygen Electrocatalysts</title><source>ACS Publications</source><creator>Ning, Honghui ; Li, Guoqiang ; Chen, Yu ; Zhang, Kaikai ; Gong, Zhuang ; Nie, Renfeng ; Hu, Wei ; Xia, Qinghua</creator><creatorcontrib>Ning, Honghui ; Li, Guoqiang ; Chen, Yu ; Zhang, Kaikai ; Gong, Zhuang ; Nie, Renfeng ; Hu, Wei ; Xia, Qinghua</creatorcontrib><description>A porous N-doped carbon-encapsulated CoNi alloy nanoparticle composite (CoNi@N–C) was prepared using a bimetallic metal–organic framework composite as the precursor. The optimal prepared Co1Ni1@N–C material at 800 °C exhibited well-defined porosities, uniform CoNi alloy nanoparticle dispersion, a high doped-N level, and scattered CoNi–N x active sites, therefore affording excellent oxygen catalytic activities toward the reduction and evolution processes of oxygen. The oxygen reduction (ORR) onset potential (E onset) on Co1Ni1@N–C was 0.91 V and the half-wave potential (E 1/2) was 0.82 V, very close to the parameters recorded on the Pt/C (20 wt Pt%) benchmark. Moreover, it is worth noting that the ORR stability of Co1Ni1@N–C was prominently higher than that of Pt/C. Under the oxygen evolution reaction condition, Co1Ni1@N–C generated the maximum current density at the potential of 1.7 V (8.60 mA cm–2) and the earliest E onset (1.35 V) among all Co x Ni y @N–C hybrids. The Co1Ni1@N–C catalyst exhibited the smallest ΔE value, confirming the superior bifunctional activity. The high surface area and porosity, and CoNi–N x active sites on the carbon surface including the proper interactions between the N-doped C shell and CoNi nanoparticles were attributed as the main contributors to the outstanding oxygen electrocatalytic property and good stability.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.8b13290</identifier><identifier>PMID: 30574774</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>ACS applied materials &amp; interfaces, 2019-01, Vol.11 (2), p.1957-1968</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a330t-f16e4866ae40715125042b85373dfc82819b691a28ee5dcfccc730d273f372f83</citedby><cites>FETCH-LOGICAL-a330t-f16e4866ae40715125042b85373dfc82819b691a28ee5dcfccc730d273f372f83</cites><orcidid>0000-0002-2812-537X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.8b13290$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.8b13290$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30574774$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ning, Honghui</creatorcontrib><creatorcontrib>Li, Guoqiang</creatorcontrib><creatorcontrib>Chen, Yu</creatorcontrib><creatorcontrib>Zhang, Kaikai</creatorcontrib><creatorcontrib>Gong, Zhuang</creatorcontrib><creatorcontrib>Nie, Renfeng</creatorcontrib><creatorcontrib>Hu, Wei</creatorcontrib><creatorcontrib>Xia, Qinghua</creatorcontrib><title>Porous N‑Doped Carbon-Encapsulated CoNi Alloy Nanoparticles Derived from MOFs as Efficient Bifunctional Oxygen Electrocatalysts</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>A porous N-doped carbon-encapsulated CoNi alloy nanoparticle composite (CoNi@N–C) was prepared using a bimetallic metal–organic framework composite as the precursor. The optimal prepared Co1Ni1@N–C material at 800 °C exhibited well-defined porosities, uniform CoNi alloy nanoparticle dispersion, a high doped-N level, and scattered CoNi–N x active sites, therefore affording excellent oxygen catalytic activities toward the reduction and evolution processes of oxygen. The oxygen reduction (ORR) onset potential (E onset) on Co1Ni1@N–C was 0.91 V and the half-wave potential (E 1/2) was 0.82 V, very close to the parameters recorded on the Pt/C (20 wt Pt%) benchmark. Moreover, it is worth noting that the ORR stability of Co1Ni1@N–C was prominently higher than that of Pt/C. Under the oxygen evolution reaction condition, Co1Ni1@N–C generated the maximum current density at the potential of 1.7 V (8.60 mA cm–2) and the earliest E onset (1.35 V) among all Co x Ni y @N–C hybrids. The Co1Ni1@N–C catalyst exhibited the smallest ΔE value, confirming the superior bifunctional activity. The high surface area and porosity, and CoNi–N x active sites on the carbon surface including the proper interactions between the N-doped C shell and CoNi nanoparticles were attributed as the main contributors to the outstanding oxygen electrocatalytic property and good stability.</description><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kMtu2zAQRYmiQZ263XYZcFkEkMOXJGqZ2s4DSOwu2rUwosiAASWqJBXEu_YT-ov5kiiwk11WMxicewc4CH2jZEEJo2egInR2IRvKWUU-oGNaCZFJlrOPb7sQM_Q5xntCCs5I_gnNOMlLUZbiGP376YMfI948_f2_8oNu8RJC4_ts3SsY4uggvdz8xuJz5_wOb6D3A4RkldMRr3SwDxNggu_w7fYiYoh4bYxVVvcJ_7Bm7FWyvgeHt4-7O93jtdMqBa8ggdvFFL-gIwMu6q-HOUe_L9a_llfZzfbyenl-kwHnJGWGFlrIogAtSElzynIiWCNzXvLWKMkkrZqiosCk1nmrjFKq5KRlJTe8ZEbyOfq-7x2C_zPqmOrORqWdg15PBmpG86qSdHo2oYs9qoKPMWhTD8F2EHY1JfWL9nqvvT5onwInh-6x6XT7hr96noDTPTAF63s_hklIfK_tGcRFjvQ</recordid><startdate>20190116</startdate><enddate>20190116</enddate><creator>Ning, Honghui</creator><creator>Li, Guoqiang</creator><creator>Chen, Yu</creator><creator>Zhang, Kaikai</creator><creator>Gong, Zhuang</creator><creator>Nie, Renfeng</creator><creator>Hu, Wei</creator><creator>Xia, Qinghua</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2812-537X</orcidid></search><sort><creationdate>20190116</creationdate><title>Porous N‑Doped Carbon-Encapsulated CoNi Alloy Nanoparticles Derived from MOFs as Efficient Bifunctional Oxygen Electrocatalysts</title><author>Ning, Honghui ; Li, Guoqiang ; Chen, Yu ; Zhang, Kaikai ; Gong, Zhuang ; Nie, Renfeng ; Hu, Wei ; Xia, Qinghua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a330t-f16e4866ae40715125042b85373dfc82819b691a28ee5dcfccc730d273f372f83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ning, Honghui</creatorcontrib><creatorcontrib>Li, Guoqiang</creatorcontrib><creatorcontrib>Chen, Yu</creatorcontrib><creatorcontrib>Zhang, Kaikai</creatorcontrib><creatorcontrib>Gong, Zhuang</creatorcontrib><creatorcontrib>Nie, Renfeng</creatorcontrib><creatorcontrib>Hu, Wei</creatorcontrib><creatorcontrib>Xia, Qinghua</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ning, Honghui</au><au>Li, Guoqiang</au><au>Chen, Yu</au><au>Zhang, Kaikai</au><au>Gong, Zhuang</au><au>Nie, Renfeng</au><au>Hu, Wei</au><au>Xia, Qinghua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Porous N‑Doped Carbon-Encapsulated CoNi Alloy Nanoparticles Derived from MOFs as Efficient Bifunctional Oxygen Electrocatalysts</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2019-01-16</date><risdate>2019</risdate><volume>11</volume><issue>2</issue><spage>1957</spage><epage>1968</epage><pages>1957-1968</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>A porous N-doped carbon-encapsulated CoNi alloy nanoparticle composite (CoNi@N–C) was prepared using a bimetallic metal–organic framework composite as the precursor. The optimal prepared Co1Ni1@N–C material at 800 °C exhibited well-defined porosities, uniform CoNi alloy nanoparticle dispersion, a high doped-N level, and scattered CoNi–N x active sites, therefore affording excellent oxygen catalytic activities toward the reduction and evolution processes of oxygen. The oxygen reduction (ORR) onset potential (E onset) on Co1Ni1@N–C was 0.91 V and the half-wave potential (E 1/2) was 0.82 V, very close to the parameters recorded on the Pt/C (20 wt Pt%) benchmark. Moreover, it is worth noting that the ORR stability of Co1Ni1@N–C was prominently higher than that of Pt/C. Under the oxygen evolution reaction condition, Co1Ni1@N–C generated the maximum current density at the potential of 1.7 V (8.60 mA cm–2) and the earliest E onset (1.35 V) among all Co x Ni y @N–C hybrids. The Co1Ni1@N–C catalyst exhibited the smallest ΔE value, confirming the superior bifunctional activity. The high surface area and porosity, and CoNi–N x active sites on the carbon surface including the proper interactions between the N-doped C shell and CoNi nanoparticles were attributed as the main contributors to the outstanding oxygen electrocatalytic property and good stability.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>30574774</pmid><doi>10.1021/acsami.8b13290</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-2812-537X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2019-01, Vol.11 (2), p.1957-1968
issn 1944-8244
1944-8252
language eng
recordid cdi_proquest_miscellaneous_2159981330
source ACS Publications
title Porous N‑Doped Carbon-Encapsulated CoNi Alloy Nanoparticles Derived from MOFs as Efficient Bifunctional Oxygen Electrocatalysts
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T06%3A35%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Porous%20N%E2%80%91Doped%20Carbon-Encapsulated%20CoNi%20Alloy%20Nanoparticles%20Derived%20from%20MOFs%20as%20Efficient%20Bifunctional%20Oxygen%20Electrocatalysts&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Ning,%20Honghui&rft.date=2019-01-16&rft.volume=11&rft.issue=2&rft.spage=1957&rft.epage=1968&rft.pages=1957-1968&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.8b13290&rft_dat=%3Cproquest_cross%3E2159981330%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2159981330&rft_id=info:pmid/30574774&rfr_iscdi=true