Structural enzymology reveals the molecular basis of substrate regiospecificity and processivity of an exemplar bacterial glycoside hydrolase family 74 endo -xyloglucanase
produces a single multimodular enzyme containing a glycoside hydrolase (GH) family 74 module (AIQ73809). Recombinant production and characterization of the GH74 module ( GH74 ) revealed a highly specific, processive -xyloglucanase that can hydrolyze the polysaccharide backbone at both branched and u...
Gespeichert in:
Veröffentlicht in: | Biochem. J 2018-12, Vol.475 (24), p.3963-3978 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3978 |
---|---|
container_issue | 24 |
container_start_page | 3963 |
container_title | Biochem. J |
container_volume | 475 |
creator | Arnal, Gregory Stogios, Peter J Asohan, Jathavan Skarina, Tatiana Savchenko, Alexei Brumer, Harry |
description | produces a single multimodular enzyme containing a glycoside hydrolase (GH) family 74 module (AIQ73809). Recombinant production and characterization of the GH74 module (
GH74
) revealed a highly specific, processive
-xyloglucanase that can hydrolyze the polysaccharide backbone at both branched and unbranched positions. X-ray crystal structures obtained for the free enzyme and oligosaccharide complexes evidenced an extensive hydrophobic binding platform - the first in GH74 extending from subsites -4 to +6 - and unique mobile active-site loops. Site-directed mutagenesis revealed that glycine-476 was uniquely responsible for the promiscuous backbone-cleaving activity of
GH74
; replacement with tyrosine, which is conserved in many GH74 members, resulted in exclusive hydrolysis at unbranched glucose units. Likewise, systematic replacement of the hydrophobic platform residues constituting the positive subsites indicated their relative contributions to the processive mode of action. Specifically, W347 (+3 subsite) and W348 (+5 subsite) are essential for processivity, while W406 (+2 subsite) and Y372 (+6 subsite) are not strictly essential, but aid processivity. |
doi_str_mv | 10.1042/bcj20180763 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_proquest_miscellaneous_2159326527</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2159326527</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-9975c554e294b49d717b041c14ce81e3d2691f99229f71a61dc338ae488822c33</originalsourceid><addsrcrecordid>eNo9kU9v1DAQxS0EoqVw4o4sTkgoYDtO7Bzpir-qxAE4R85ksuvKiRePUzV8Jb4krrblNKOZn9680WPspRTvpNDq_QDXSkgrTFs_YudSG1FZo-xjdi5Uq6tWKHnGnhFdCyG10OIpO6uFbmtr5Dn7-yOnFfKaXOC4_NnmGOJ-4wlv0AXi-YC8jBDW4BIfHHniceK0DpSTy1jAvY90RPCTB5837paRH1MEJPI3d4OCu4XjLc7HkwZkTL6c24cNIvkR-WEbUwyOkE9u9mHjRhczY-TV7VbshBXcUrbP2ZOpmMIX9_WC_fr08efuS3X1_fPX3YerCmqrctV1poGm0ag6PehuNNIMQkuQGtBKrEfVdnLqOqW6yUjXyhHq2jrU1lqlSn_BXp90I2XfU3kL4QBxWRByLxulWyMK9OYElWd_r0i5nz0BhuAWjCv1SjZdrdpGmYK-PaGQIlHCqT8mP7u09VL0dxH2l7tvDxEW-tW98DrMOP5nHzKr_wEg9Znp</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2159326527</pqid></control><display><type>article</type><title>Structural enzymology reveals the molecular basis of substrate regiospecificity and processivity of an exemplar bacterial glycoside hydrolase family 74 endo -xyloglucanase</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Arnal, Gregory ; Stogios, Peter J ; Asohan, Jathavan ; Skarina, Tatiana ; Savchenko, Alexei ; Brumer, Harry</creator><creatorcontrib>Arnal, Gregory ; Stogios, Peter J ; Asohan, Jathavan ; Skarina, Tatiana ; Savchenko, Alexei ; Brumer, Harry ; Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><description>produces a single multimodular enzyme containing a glycoside hydrolase (GH) family 74 module (AIQ73809). Recombinant production and characterization of the GH74 module (
GH74
) revealed a highly specific, processive
-xyloglucanase that can hydrolyze the polysaccharide backbone at both branched and unbranched positions. X-ray crystal structures obtained for the free enzyme and oligosaccharide complexes evidenced an extensive hydrophobic binding platform - the first in GH74 extending from subsites -4 to +6 - and unique mobile active-site loops. Site-directed mutagenesis revealed that glycine-476 was uniquely responsible for the promiscuous backbone-cleaving activity of
GH74
; replacement with tyrosine, which is conserved in many GH74 members, resulted in exclusive hydrolysis at unbranched glucose units. Likewise, systematic replacement of the hydrophobic platform residues constituting the positive subsites indicated their relative contributions to the processive mode of action. Specifically, W347 (+3 subsite) and W348 (+5 subsite) are essential for processivity, while W406 (+2 subsite) and Y372 (+6 subsite) are not strictly essential, but aid processivity.</description><identifier>ISSN: 0264-6021</identifier><identifier>EISSN: 1470-8728</identifier><identifier>DOI: 10.1042/bcj20180763</identifier><identifier>PMID: 30463871</identifier><language>eng</language><publisher>England</publisher><subject>Amino Acid Sequence ; Bacterial Proteins - chemistry ; Bacterial Proteins - genetics ; Bacterial Proteins - metabolism ; Crystallography, X-Ray ; Glycoside Hydrolases - chemistry ; Glycoside Hydrolases - genetics ; Glycoside Hydrolases - metabolism ; Paenibacillus - enzymology ; Paenibacillus - genetics ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Substrate Specificity - physiology</subject><ispartof>Biochem. J, 2018-12, Vol.475 (24), p.3963-3978</ispartof><rights>2018 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c382t-9975c554e294b49d717b041c14ce81e3d2691f99229f71a61dc338ae488822c33</citedby><cites>FETCH-LOGICAL-c382t-9975c554e294b49d717b041c14ce81e3d2691f99229f71a61dc338ae488822c33</cites><orcidid>0000-0002-0101-862X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30463871$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1524670$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Arnal, Gregory</creatorcontrib><creatorcontrib>Stogios, Peter J</creatorcontrib><creatorcontrib>Asohan, Jathavan</creatorcontrib><creatorcontrib>Skarina, Tatiana</creatorcontrib><creatorcontrib>Savchenko, Alexei</creatorcontrib><creatorcontrib>Brumer, Harry</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><title>Structural enzymology reveals the molecular basis of substrate regiospecificity and processivity of an exemplar bacterial glycoside hydrolase family 74 endo -xyloglucanase</title><title>Biochem. J</title><addtitle>Biochem J</addtitle><description>produces a single multimodular enzyme containing a glycoside hydrolase (GH) family 74 module (AIQ73809). Recombinant production and characterization of the GH74 module (
GH74
) revealed a highly specific, processive
-xyloglucanase that can hydrolyze the polysaccharide backbone at both branched and unbranched positions. X-ray crystal structures obtained for the free enzyme and oligosaccharide complexes evidenced an extensive hydrophobic binding platform - the first in GH74 extending from subsites -4 to +6 - and unique mobile active-site loops. Site-directed mutagenesis revealed that glycine-476 was uniquely responsible for the promiscuous backbone-cleaving activity of
GH74
; replacement with tyrosine, which is conserved in many GH74 members, resulted in exclusive hydrolysis at unbranched glucose units. Likewise, systematic replacement of the hydrophobic platform residues constituting the positive subsites indicated their relative contributions to the processive mode of action. Specifically, W347 (+3 subsite) and W348 (+5 subsite) are essential for processivity, while W406 (+2 subsite) and Y372 (+6 subsite) are not strictly essential, but aid processivity.</description><subject>Amino Acid Sequence</subject><subject>Bacterial Proteins - chemistry</subject><subject>Bacterial Proteins - genetics</subject><subject>Bacterial Proteins - metabolism</subject><subject>Crystallography, X-Ray</subject><subject>Glycoside Hydrolases - chemistry</subject><subject>Glycoside Hydrolases - genetics</subject><subject>Glycoside Hydrolases - metabolism</subject><subject>Paenibacillus - enzymology</subject><subject>Paenibacillus - genetics</subject><subject>Protein Structure, Secondary</subject><subject>Protein Structure, Tertiary</subject><subject>Substrate Specificity - physiology</subject><issn>0264-6021</issn><issn>1470-8728</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNo9kU9v1DAQxS0EoqVw4o4sTkgoYDtO7Bzpir-qxAE4R85ksuvKiRePUzV8Jb4krrblNKOZn9680WPspRTvpNDq_QDXSkgrTFs_YudSG1FZo-xjdi5Uq6tWKHnGnhFdCyG10OIpO6uFbmtr5Dn7-yOnFfKaXOC4_NnmGOJ-4wlv0AXi-YC8jBDW4BIfHHniceK0DpSTy1jAvY90RPCTB5837paRH1MEJPI3d4OCu4XjLc7HkwZkTL6c24cNIvkR-WEbUwyOkE9u9mHjRhczY-TV7VbshBXcUrbP2ZOpmMIX9_WC_fr08efuS3X1_fPX3YerCmqrctV1poGm0ag6PehuNNIMQkuQGtBKrEfVdnLqOqW6yUjXyhHq2jrU1lqlSn_BXp90I2XfU3kL4QBxWRByLxulWyMK9OYElWd_r0i5nz0BhuAWjCv1SjZdrdpGmYK-PaGQIlHCqT8mP7u09VL0dxH2l7tvDxEW-tW98DrMOP5nHzKr_wEg9Znp</recordid><startdate>20181219</startdate><enddate>20181219</enddate><creator>Arnal, Gregory</creator><creator>Stogios, Peter J</creator><creator>Asohan, Jathavan</creator><creator>Skarina, Tatiana</creator><creator>Savchenko, Alexei</creator><creator>Brumer, Harry</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-0101-862X</orcidid></search><sort><creationdate>20181219</creationdate><title>Structural enzymology reveals the molecular basis of substrate regiospecificity and processivity of an exemplar bacterial glycoside hydrolase family 74 endo -xyloglucanase</title><author>Arnal, Gregory ; Stogios, Peter J ; Asohan, Jathavan ; Skarina, Tatiana ; Savchenko, Alexei ; Brumer, Harry</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-9975c554e294b49d717b041c14ce81e3d2691f99229f71a61dc338ae488822c33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Amino Acid Sequence</topic><topic>Bacterial Proteins - chemistry</topic><topic>Bacterial Proteins - genetics</topic><topic>Bacterial Proteins - metabolism</topic><topic>Crystallography, X-Ray</topic><topic>Glycoside Hydrolases - chemistry</topic><topic>Glycoside Hydrolases - genetics</topic><topic>Glycoside Hydrolases - metabolism</topic><topic>Paenibacillus - enzymology</topic><topic>Paenibacillus - genetics</topic><topic>Protein Structure, Secondary</topic><topic>Protein Structure, Tertiary</topic><topic>Substrate Specificity - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Arnal, Gregory</creatorcontrib><creatorcontrib>Stogios, Peter J</creatorcontrib><creatorcontrib>Asohan, Jathavan</creatorcontrib><creatorcontrib>Skarina, Tatiana</creatorcontrib><creatorcontrib>Savchenko, Alexei</creatorcontrib><creatorcontrib>Brumer, Harry</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Biochem. J</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Arnal, Gregory</au><au>Stogios, Peter J</au><au>Asohan, Jathavan</au><au>Skarina, Tatiana</au><au>Savchenko, Alexei</au><au>Brumer, Harry</au><aucorp>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural enzymology reveals the molecular basis of substrate regiospecificity and processivity of an exemplar bacterial glycoside hydrolase family 74 endo -xyloglucanase</atitle><jtitle>Biochem. J</jtitle><addtitle>Biochem J</addtitle><date>2018-12-19</date><risdate>2018</risdate><volume>475</volume><issue>24</issue><spage>3963</spage><epage>3978</epage><pages>3963-3978</pages><issn>0264-6021</issn><eissn>1470-8728</eissn><abstract>produces a single multimodular enzyme containing a glycoside hydrolase (GH) family 74 module (AIQ73809). Recombinant production and characterization of the GH74 module (
GH74
) revealed a highly specific, processive
-xyloglucanase that can hydrolyze the polysaccharide backbone at both branched and unbranched positions. X-ray crystal structures obtained for the free enzyme and oligosaccharide complexes evidenced an extensive hydrophobic binding platform - the first in GH74 extending from subsites -4 to +6 - and unique mobile active-site loops. Site-directed mutagenesis revealed that glycine-476 was uniquely responsible for the promiscuous backbone-cleaving activity of
GH74
; replacement with tyrosine, which is conserved in many GH74 members, resulted in exclusive hydrolysis at unbranched glucose units. Likewise, systematic replacement of the hydrophobic platform residues constituting the positive subsites indicated their relative contributions to the processive mode of action. Specifically, W347 (+3 subsite) and W348 (+5 subsite) are essential for processivity, while W406 (+2 subsite) and Y372 (+6 subsite) are not strictly essential, but aid processivity.</abstract><cop>England</cop><pmid>30463871</pmid><doi>10.1042/bcj20180763</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-0101-862X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0264-6021 |
ispartof | Biochem. J, 2018-12, Vol.475 (24), p.3963-3978 |
issn | 0264-6021 1470-8728 |
language | eng |
recordid | cdi_proquest_miscellaneous_2159326527 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central |
subjects | Amino Acid Sequence Bacterial Proteins - chemistry Bacterial Proteins - genetics Bacterial Proteins - metabolism Crystallography, X-Ray Glycoside Hydrolases - chemistry Glycoside Hydrolases - genetics Glycoside Hydrolases - metabolism Paenibacillus - enzymology Paenibacillus - genetics Protein Structure, Secondary Protein Structure, Tertiary Substrate Specificity - physiology |
title | Structural enzymology reveals the molecular basis of substrate regiospecificity and processivity of an exemplar bacterial glycoside hydrolase family 74 endo -xyloglucanase |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T08%3A24%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20enzymology%20reveals%20the%20molecular%20basis%20of%20substrate%20regiospecificity%20and%20processivity%20of%20an%20exemplar%20bacterial%20glycoside%20hydrolase%20family%2074%20endo%20-xyloglucanase&rft.jtitle=Biochem.%20J&rft.au=Arnal,%20Gregory&rft.aucorp=Argonne%20National%20Lab.%20(ANL),%20Argonne,%20IL%20(United%20States).%20Advanced%20Photon%20Source%20(APS)&rft.date=2018-12-19&rft.volume=475&rft.issue=24&rft.spage=3963&rft.epage=3978&rft.pages=3963-3978&rft.issn=0264-6021&rft.eissn=1470-8728&rft_id=info:doi/10.1042/bcj20180763&rft_dat=%3Cproquest_osti_%3E2159326527%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2159326527&rft_id=info:pmid/30463871&rfr_iscdi=true |