Seed prioritized unwrapping (SPUN) for MR phase imaging

Background Region‐growing‐based phase unwrapping methods have the potential for lossless phase aliasing removal, but generally suffer from unwrapping error propagation associated with discontinuous phase and/or long calculation times. The tradeoff point between robustness and efficiency of phase unw...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of magnetic resonance imaging 2019-07, Vol.50 (1), p.62-70
Hauptverfasser: Ye, Yongquan, Zhou, Fei, Zong, Jinguang, Lyu, Jingyuan, Chen, Yanling, Zhang, Shuheng, Zhang, Weiguo, He, Qiang, Li, Xueping, Li, Ming, Zhang, Qinglei, Qing, Zhao, Zhang, Bing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 70
container_issue 1
container_start_page 62
container_title Journal of magnetic resonance imaging
container_volume 50
creator Ye, Yongquan
Zhou, Fei
Zong, Jinguang
Lyu, Jingyuan
Chen, Yanling
Zhang, Shuheng
Zhang, Weiguo
He, Qiang
Li, Xueping
Li, Ming
Zhang, Qinglei
Qing, Zhao
Zhang, Bing
description Background Region‐growing‐based phase unwrapping methods have the potential for lossless phase aliasing removal, but generally suffer from unwrapping error propagation associated with discontinuous phase and/or long calculation times. The tradeoff point between robustness and efficiency of phase unwrapping methods in the region‐growing category requires improvement. Purpose To demonstrate an accurate, robust, and efficient region‐growing phase unwrapping method for MR phase imaging applications. Study Type Prospective. Subjects, Phantom normal human subjects (10) / brain surgery patients (2) / water phantoms / computer simulation. Field Strength/Sequence 3 T/gradient echo sequences (2D and 3D). Assessment A seed prioritized unwrapping (SPUN) method was developed based on single‐region growing, prioritizing only a portion (eg, 100 seeds or 1% seeds) of available seed voxels based on continuity quality during each region‐growing iteration. Computer simulation, phantom, and in vivo brain and pelvis scans were performed. The error rates, seed percentages, and calculation times were recorded and reported. SPUN unwrapped phase images were visually evaluated and compared with Laplacian unwrapped results. Statistical Tests Monte Carlo simulation was performed on a 3D dipole phase model with a signal‐to‐noise ratio (SNR) of 1–9 dB, to obtain the mean and standard deviation of calculation error rates and calculation times. Results Simulation revealed a very robust unwrapping performance of SPUN, reaching an error rate of
doi_str_mv 10.1002/jmri.26606
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2159318188</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2159318188</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3576-71e1f50c7cd12f08daea7376567e70e430ba387ad9e0b1c2489adf85e2e5e5753</originalsourceid><addsrcrecordid>eNp9kMtOwkAUhidGI4hufADTxA2aFOfS6UyXhnjBgBqQ9WRoT7GkN2doCD69g0UXLlydPzlf_pzzIXRO8IBgTG9WhckGNAxxeIC6hFPqUy7DQ5cxZz6RWHTQibUrjHEUBfwYdRjmYRREQReJGUDi1SarTLbOPl1uyo3RdZ2VS68_e50_X3lpZbzJ1KvftQUvK_TS7U7RUapzC2f72UPz-7u34aM_fnkYDW_Hfsy4CH1BgKQcxyJOCE2xTDRowUTIQwECQ8DwQjMpdBIBXpCYBjLSSSo5UODABWc91G97a1N9NGDXqshsDHmuS6gaqyjhESOSSOnQyz_oqmpM6a5TlAaEByyIdtR1S8WmstZAqtzzhTZbRbDa6VQ7nepbp4Mv9pXNooDkF_3x5wDSApssh-0_VeppMh21pV_BA31E</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2241543498</pqid></control><display><type>article</type><title>Seed prioritized unwrapping (SPUN) for MR phase imaging</title><source>Wiley Online Library Journals Frontfile Complete</source><source>Wiley Online Library Free Content</source><creator>Ye, Yongquan ; Zhou, Fei ; Zong, Jinguang ; Lyu, Jingyuan ; Chen, Yanling ; Zhang, Shuheng ; Zhang, Weiguo ; He, Qiang ; Li, Xueping ; Li, Ming ; Zhang, Qinglei ; Qing, Zhao ; Zhang, Bing</creator><creatorcontrib>Ye, Yongquan ; Zhou, Fei ; Zong, Jinguang ; Lyu, Jingyuan ; Chen, Yanling ; Zhang, Shuheng ; Zhang, Weiguo ; He, Qiang ; Li, Xueping ; Li, Ming ; Zhang, Qinglei ; Qing, Zhao ; Zhang, Bing</creatorcontrib><description>Background Region‐growing‐based phase unwrapping methods have the potential for lossless phase aliasing removal, but generally suffer from unwrapping error propagation associated with discontinuous phase and/or long calculation times. The tradeoff point between robustness and efficiency of phase unwrapping methods in the region‐growing category requires improvement. Purpose To demonstrate an accurate, robust, and efficient region‐growing phase unwrapping method for MR phase imaging applications. Study Type Prospective. Subjects, Phantom normal human subjects (10) / brain surgery patients (2) / water phantoms / computer simulation. Field Strength/Sequence 3 T/gradient echo sequences (2D and 3D). Assessment A seed prioritized unwrapping (SPUN) method was developed based on single‐region growing, prioritizing only a portion (eg, 100 seeds or 1% seeds) of available seed voxels based on continuity quality during each region‐growing iteration. Computer simulation, phantom, and in vivo brain and pelvis scans were performed. The error rates, seed percentages, and calculation times were recorded and reported. SPUN unwrapped phase images were visually evaluated and compared with Laplacian unwrapped results. Statistical Tests Monte Carlo simulation was performed on a 3D dipole phase model with a signal‐to‐noise ratio (SNR) of 1–9 dB, to obtain the mean and standard deviation of calculation error rates and calculation times. Results Simulation revealed a very robust unwrapping performance of SPUN, reaching an error rate of &lt;0.4% even with SNR as low as 1 dB. For all in vivo data, SPUN was able to robustly unwrap the phase images of modest SNR and complex morphology with visually minimal errors and fast calculation speed (eg, &lt;4 min for 368 × 312 × 128 data) when using a proper seed priority number, eg, Nsp = 1 or 10 voxels for 2D and Nsp = 1% for 3D data. Data Conclusion SPUN offers very robust and fast region‐growing‐based phase unwrapping, and does not require any tissue masking or segmentation, nor poses a limitation over imaging parameters. Level of Evidence: 3 Technical Efficacy: Stage 1 J. Magn. Reson. Imaging 2019;50:62–70.</description><identifier>ISSN: 1053-1807</identifier><identifier>EISSN: 1522-2586</identifier><identifier>DOI: 10.1002/jmri.26606</identifier><identifier>PMID: 30569494</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>Aliasing ; Brain ; Computer simulation ; Dipoles ; Errors ; Field strength ; Image processing ; Image segmentation ; In vivo methods and tests ; Iterative methods ; Magnetic resonance imaging ; Masking ; Medical imaging ; Monte Carlo simulation ; Morphology ; Neuroimaging ; Noise levels ; Pelvis ; Robustness ; Seeds ; Statistical analysis ; Statistical tests ; Surgery ; Three dimensional models</subject><ispartof>Journal of magnetic resonance imaging, 2019-07, Vol.50 (1), p.62-70</ispartof><rights>2018 International Society for Magnetic Resonance in Medicine</rights><rights>2018 International Society for Magnetic Resonance in Medicine.</rights><rights>2019 International Society for Magnetic Resonance in Medicine</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3576-71e1f50c7cd12f08daea7376567e70e430ba387ad9e0b1c2489adf85e2e5e5753</citedby><cites>FETCH-LOGICAL-c3576-71e1f50c7cd12f08daea7376567e70e430ba387ad9e0b1c2489adf85e2e5e5753</cites><orcidid>0000-0002-6673-6753</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjmri.26606$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjmri.26606$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,1427,27901,27902,45550,45551,46384,46808</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30569494$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ye, Yongquan</creatorcontrib><creatorcontrib>Zhou, Fei</creatorcontrib><creatorcontrib>Zong, Jinguang</creatorcontrib><creatorcontrib>Lyu, Jingyuan</creatorcontrib><creatorcontrib>Chen, Yanling</creatorcontrib><creatorcontrib>Zhang, Shuheng</creatorcontrib><creatorcontrib>Zhang, Weiguo</creatorcontrib><creatorcontrib>He, Qiang</creatorcontrib><creatorcontrib>Li, Xueping</creatorcontrib><creatorcontrib>Li, Ming</creatorcontrib><creatorcontrib>Zhang, Qinglei</creatorcontrib><creatorcontrib>Qing, Zhao</creatorcontrib><creatorcontrib>Zhang, Bing</creatorcontrib><title>Seed prioritized unwrapping (SPUN) for MR phase imaging</title><title>Journal of magnetic resonance imaging</title><addtitle>J Magn Reson Imaging</addtitle><description>Background Region‐growing‐based phase unwrapping methods have the potential for lossless phase aliasing removal, but generally suffer from unwrapping error propagation associated with discontinuous phase and/or long calculation times. The tradeoff point between robustness and efficiency of phase unwrapping methods in the region‐growing category requires improvement. Purpose To demonstrate an accurate, robust, and efficient region‐growing phase unwrapping method for MR phase imaging applications. Study Type Prospective. Subjects, Phantom normal human subjects (10) / brain surgery patients (2) / water phantoms / computer simulation. Field Strength/Sequence 3 T/gradient echo sequences (2D and 3D). Assessment A seed prioritized unwrapping (SPUN) method was developed based on single‐region growing, prioritizing only a portion (eg, 100 seeds or 1% seeds) of available seed voxels based on continuity quality during each region‐growing iteration. Computer simulation, phantom, and in vivo brain and pelvis scans were performed. The error rates, seed percentages, and calculation times were recorded and reported. SPUN unwrapped phase images were visually evaluated and compared with Laplacian unwrapped results. Statistical Tests Monte Carlo simulation was performed on a 3D dipole phase model with a signal‐to‐noise ratio (SNR) of 1–9 dB, to obtain the mean and standard deviation of calculation error rates and calculation times. Results Simulation revealed a very robust unwrapping performance of SPUN, reaching an error rate of &lt;0.4% even with SNR as low as 1 dB. For all in vivo data, SPUN was able to robustly unwrap the phase images of modest SNR and complex morphology with visually minimal errors and fast calculation speed (eg, &lt;4 min for 368 × 312 × 128 data) when using a proper seed priority number, eg, Nsp = 1 or 10 voxels for 2D and Nsp = 1% for 3D data. Data Conclusion SPUN offers very robust and fast region‐growing‐based phase unwrapping, and does not require any tissue masking or segmentation, nor poses a limitation over imaging parameters. Level of Evidence: 3 Technical Efficacy: Stage 1 J. Magn. Reson. Imaging 2019;50:62–70.</description><subject>Aliasing</subject><subject>Brain</subject><subject>Computer simulation</subject><subject>Dipoles</subject><subject>Errors</subject><subject>Field strength</subject><subject>Image processing</subject><subject>Image segmentation</subject><subject>In vivo methods and tests</subject><subject>Iterative methods</subject><subject>Magnetic resonance imaging</subject><subject>Masking</subject><subject>Medical imaging</subject><subject>Monte Carlo simulation</subject><subject>Morphology</subject><subject>Neuroimaging</subject><subject>Noise levels</subject><subject>Pelvis</subject><subject>Robustness</subject><subject>Seeds</subject><subject>Statistical analysis</subject><subject>Statistical tests</subject><subject>Surgery</subject><subject>Three dimensional models</subject><issn>1053-1807</issn><issn>1522-2586</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwkAUhidGI4hufADTxA2aFOfS6UyXhnjBgBqQ9WRoT7GkN2doCD69g0UXLlydPzlf_pzzIXRO8IBgTG9WhckGNAxxeIC6hFPqUy7DQ5cxZz6RWHTQibUrjHEUBfwYdRjmYRREQReJGUDi1SarTLbOPl1uyo3RdZ2VS68_e50_X3lpZbzJ1KvftQUvK_TS7U7RUapzC2f72UPz-7u34aM_fnkYDW_Hfsy4CH1BgKQcxyJOCE2xTDRowUTIQwECQ8DwQjMpdBIBXpCYBjLSSSo5UODABWc91G97a1N9NGDXqshsDHmuS6gaqyjhESOSSOnQyz_oqmpM6a5TlAaEByyIdtR1S8WmstZAqtzzhTZbRbDa6VQ7nepbp4Mv9pXNooDkF_3x5wDSApssh-0_VeppMh21pV_BA31E</recordid><startdate>201907</startdate><enddate>201907</enddate><creator>Ye, Yongquan</creator><creator>Zhou, Fei</creator><creator>Zong, Jinguang</creator><creator>Lyu, Jingyuan</creator><creator>Chen, Yanling</creator><creator>Zhang, Shuheng</creator><creator>Zhang, Weiguo</creator><creator>He, Qiang</creator><creator>Li, Xueping</creator><creator>Li, Ming</creator><creator>Zhang, Qinglei</creator><creator>Qing, Zhao</creator><creator>Zhang, Bing</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6673-6753</orcidid></search><sort><creationdate>201907</creationdate><title>Seed prioritized unwrapping (SPUN) for MR phase imaging</title><author>Ye, Yongquan ; Zhou, Fei ; Zong, Jinguang ; Lyu, Jingyuan ; Chen, Yanling ; Zhang, Shuheng ; Zhang, Weiguo ; He, Qiang ; Li, Xueping ; Li, Ming ; Zhang, Qinglei ; Qing, Zhao ; Zhang, Bing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3576-71e1f50c7cd12f08daea7376567e70e430ba387ad9e0b1c2489adf85e2e5e5753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Aliasing</topic><topic>Brain</topic><topic>Computer simulation</topic><topic>Dipoles</topic><topic>Errors</topic><topic>Field strength</topic><topic>Image processing</topic><topic>Image segmentation</topic><topic>In vivo methods and tests</topic><topic>Iterative methods</topic><topic>Magnetic resonance imaging</topic><topic>Masking</topic><topic>Medical imaging</topic><topic>Monte Carlo simulation</topic><topic>Morphology</topic><topic>Neuroimaging</topic><topic>Noise levels</topic><topic>Pelvis</topic><topic>Robustness</topic><topic>Seeds</topic><topic>Statistical analysis</topic><topic>Statistical tests</topic><topic>Surgery</topic><topic>Three dimensional models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ye, Yongquan</creatorcontrib><creatorcontrib>Zhou, Fei</creatorcontrib><creatorcontrib>Zong, Jinguang</creatorcontrib><creatorcontrib>Lyu, Jingyuan</creatorcontrib><creatorcontrib>Chen, Yanling</creatorcontrib><creatorcontrib>Zhang, Shuheng</creatorcontrib><creatorcontrib>Zhang, Weiguo</creatorcontrib><creatorcontrib>He, Qiang</creatorcontrib><creatorcontrib>Li, Xueping</creatorcontrib><creatorcontrib>Li, Ming</creatorcontrib><creatorcontrib>Zhang, Qinglei</creatorcontrib><creatorcontrib>Qing, Zhao</creatorcontrib><creatorcontrib>Zhang, Bing</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of magnetic resonance imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ye, Yongquan</au><au>Zhou, Fei</au><au>Zong, Jinguang</au><au>Lyu, Jingyuan</au><au>Chen, Yanling</au><au>Zhang, Shuheng</au><au>Zhang, Weiguo</au><au>He, Qiang</au><au>Li, Xueping</au><au>Li, Ming</au><au>Zhang, Qinglei</au><au>Qing, Zhao</au><au>Zhang, Bing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Seed prioritized unwrapping (SPUN) for MR phase imaging</atitle><jtitle>Journal of magnetic resonance imaging</jtitle><addtitle>J Magn Reson Imaging</addtitle><date>2019-07</date><risdate>2019</risdate><volume>50</volume><issue>1</issue><spage>62</spage><epage>70</epage><pages>62-70</pages><issn>1053-1807</issn><eissn>1522-2586</eissn><abstract>Background Region‐growing‐based phase unwrapping methods have the potential for lossless phase aliasing removal, but generally suffer from unwrapping error propagation associated with discontinuous phase and/or long calculation times. The tradeoff point between robustness and efficiency of phase unwrapping methods in the region‐growing category requires improvement. Purpose To demonstrate an accurate, robust, and efficient region‐growing phase unwrapping method for MR phase imaging applications. Study Type Prospective. Subjects, Phantom normal human subjects (10) / brain surgery patients (2) / water phantoms / computer simulation. Field Strength/Sequence 3 T/gradient echo sequences (2D and 3D). Assessment A seed prioritized unwrapping (SPUN) method was developed based on single‐region growing, prioritizing only a portion (eg, 100 seeds or 1% seeds) of available seed voxels based on continuity quality during each region‐growing iteration. Computer simulation, phantom, and in vivo brain and pelvis scans were performed. The error rates, seed percentages, and calculation times were recorded and reported. SPUN unwrapped phase images were visually evaluated and compared with Laplacian unwrapped results. Statistical Tests Monte Carlo simulation was performed on a 3D dipole phase model with a signal‐to‐noise ratio (SNR) of 1–9 dB, to obtain the mean and standard deviation of calculation error rates and calculation times. Results Simulation revealed a very robust unwrapping performance of SPUN, reaching an error rate of &lt;0.4% even with SNR as low as 1 dB. For all in vivo data, SPUN was able to robustly unwrap the phase images of modest SNR and complex morphology with visually minimal errors and fast calculation speed (eg, &lt;4 min for 368 × 312 × 128 data) when using a proper seed priority number, eg, Nsp = 1 or 10 voxels for 2D and Nsp = 1% for 3D data. Data Conclusion SPUN offers very robust and fast region‐growing‐based phase unwrapping, and does not require any tissue masking or segmentation, nor poses a limitation over imaging parameters. Level of Evidence: 3 Technical Efficacy: Stage 1 J. Magn. Reson. Imaging 2019;50:62–70.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>30569494</pmid><doi>10.1002/jmri.26606</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-6673-6753</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1053-1807
ispartof Journal of magnetic resonance imaging, 2019-07, Vol.50 (1), p.62-70
issn 1053-1807
1522-2586
language eng
recordid cdi_proquest_miscellaneous_2159318188
source Wiley Online Library Journals Frontfile Complete; Wiley Online Library Free Content
subjects Aliasing
Brain
Computer simulation
Dipoles
Errors
Field strength
Image processing
Image segmentation
In vivo methods and tests
Iterative methods
Magnetic resonance imaging
Masking
Medical imaging
Monte Carlo simulation
Morphology
Neuroimaging
Noise levels
Pelvis
Robustness
Seeds
Statistical analysis
Statistical tests
Surgery
Three dimensional models
title Seed prioritized unwrapping (SPUN) for MR phase imaging
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T07%3A26%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Seed%20prioritized%20unwrapping%20(SPUN)%20for%20MR%20phase%20imaging&rft.jtitle=Journal%20of%20magnetic%20resonance%20imaging&rft.au=Ye,%20Yongquan&rft.date=2019-07&rft.volume=50&rft.issue=1&rft.spage=62&rft.epage=70&rft.pages=62-70&rft.issn=1053-1807&rft.eissn=1522-2586&rft_id=info:doi/10.1002/jmri.26606&rft_dat=%3Cproquest_cross%3E2159318188%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2241543498&rft_id=info:pmid/30569494&rfr_iscdi=true