Seed prioritized unwrapping (SPUN) for MR phase imaging
Background Region‐growing‐based phase unwrapping methods have the potential for lossless phase aliasing removal, but generally suffer from unwrapping error propagation associated with discontinuous phase and/or long calculation times. The tradeoff point between robustness and efficiency of phase unw...
Gespeichert in:
Veröffentlicht in: | Journal of magnetic resonance imaging 2019-07, Vol.50 (1), p.62-70 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 70 |
---|---|
container_issue | 1 |
container_start_page | 62 |
container_title | Journal of magnetic resonance imaging |
container_volume | 50 |
creator | Ye, Yongquan Zhou, Fei Zong, Jinguang Lyu, Jingyuan Chen, Yanling Zhang, Shuheng Zhang, Weiguo He, Qiang Li, Xueping Li, Ming Zhang, Qinglei Qing, Zhao Zhang, Bing |
description | Background
Region‐growing‐based phase unwrapping methods have the potential for lossless phase aliasing removal, but generally suffer from unwrapping error propagation associated with discontinuous phase and/or long calculation times. The tradeoff point between robustness and efficiency of phase unwrapping methods in the region‐growing category requires improvement.
Purpose
To demonstrate an accurate, robust, and efficient region‐growing phase unwrapping method for MR phase imaging applications.
Study Type
Prospective.
Subjects, Phantom
normal human subjects (10) / brain surgery patients (2) / water phantoms / computer simulation.
Field Strength/Sequence
3 T/gradient echo sequences (2D and 3D).
Assessment
A seed prioritized unwrapping (SPUN) method was developed based on single‐region growing, prioritizing only a portion (eg, 100 seeds or 1% seeds) of available seed voxels based on continuity quality during each region‐growing iteration. Computer simulation, phantom, and in vivo brain and pelvis scans were performed. The error rates, seed percentages, and calculation times were recorded and reported. SPUN unwrapped phase images were visually evaluated and compared with Laplacian unwrapped results.
Statistical Tests
Monte Carlo simulation was performed on a 3D dipole phase model with a signal‐to‐noise ratio (SNR) of 1–9 dB, to obtain the mean and standard deviation of calculation error rates and calculation times.
Results
Simulation revealed a very robust unwrapping performance of SPUN, reaching an error rate of |
doi_str_mv | 10.1002/jmri.26606 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2159318188</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2159318188</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3576-71e1f50c7cd12f08daea7376567e70e430ba387ad9e0b1c2489adf85e2e5e5753</originalsourceid><addsrcrecordid>eNp9kMtOwkAUhidGI4hufADTxA2aFOfS6UyXhnjBgBqQ9WRoT7GkN2doCD69g0UXLlydPzlf_pzzIXRO8IBgTG9WhckGNAxxeIC6hFPqUy7DQ5cxZz6RWHTQibUrjHEUBfwYdRjmYRREQReJGUDi1SarTLbOPl1uyo3RdZ2VS68_e50_X3lpZbzJ1KvftQUvK_TS7U7RUapzC2f72UPz-7u34aM_fnkYDW_Hfsy4CH1BgKQcxyJOCE2xTDRowUTIQwECQ8DwQjMpdBIBXpCYBjLSSSo5UODABWc91G97a1N9NGDXqshsDHmuS6gaqyjhESOSSOnQyz_oqmpM6a5TlAaEByyIdtR1S8WmstZAqtzzhTZbRbDa6VQ7nepbp4Mv9pXNooDkF_3x5wDSApssh-0_VeppMh21pV_BA31E</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2241543498</pqid></control><display><type>article</type><title>Seed prioritized unwrapping (SPUN) for MR phase imaging</title><source>Wiley Online Library Journals Frontfile Complete</source><source>Wiley Online Library Free Content</source><creator>Ye, Yongquan ; Zhou, Fei ; Zong, Jinguang ; Lyu, Jingyuan ; Chen, Yanling ; Zhang, Shuheng ; Zhang, Weiguo ; He, Qiang ; Li, Xueping ; Li, Ming ; Zhang, Qinglei ; Qing, Zhao ; Zhang, Bing</creator><creatorcontrib>Ye, Yongquan ; Zhou, Fei ; Zong, Jinguang ; Lyu, Jingyuan ; Chen, Yanling ; Zhang, Shuheng ; Zhang, Weiguo ; He, Qiang ; Li, Xueping ; Li, Ming ; Zhang, Qinglei ; Qing, Zhao ; Zhang, Bing</creatorcontrib><description>Background
Region‐growing‐based phase unwrapping methods have the potential for lossless phase aliasing removal, but generally suffer from unwrapping error propagation associated with discontinuous phase and/or long calculation times. The tradeoff point between robustness and efficiency of phase unwrapping methods in the region‐growing category requires improvement.
Purpose
To demonstrate an accurate, robust, and efficient region‐growing phase unwrapping method for MR phase imaging applications.
Study Type
Prospective.
Subjects, Phantom
normal human subjects (10) / brain surgery patients (2) / water phantoms / computer simulation.
Field Strength/Sequence
3 T/gradient echo sequences (2D and 3D).
Assessment
A seed prioritized unwrapping (SPUN) method was developed based on single‐region growing, prioritizing only a portion (eg, 100 seeds or 1% seeds) of available seed voxels based on continuity quality during each region‐growing iteration. Computer simulation, phantom, and in vivo brain and pelvis scans were performed. The error rates, seed percentages, and calculation times were recorded and reported. SPUN unwrapped phase images were visually evaluated and compared with Laplacian unwrapped results.
Statistical Tests
Monte Carlo simulation was performed on a 3D dipole phase model with a signal‐to‐noise ratio (SNR) of 1–9 dB, to obtain the mean and standard deviation of calculation error rates and calculation times.
Results
Simulation revealed a very robust unwrapping performance of SPUN, reaching an error rate of <0.4% even with SNR as low as 1 dB. For all in vivo data, SPUN was able to robustly unwrap the phase images of modest SNR and complex morphology with visually minimal errors and fast calculation speed (eg, <4 min for 368 × 312 × 128 data) when using a proper seed priority number, eg, Nsp = 1 or 10 voxels for 2D and Nsp = 1% for 3D data.
Data Conclusion
SPUN offers very robust and fast region‐growing‐based phase unwrapping, and does not require any tissue masking or segmentation, nor poses a limitation over imaging parameters.
Level of Evidence: 3
Technical Efficacy: Stage 1
J. Magn. Reson. Imaging 2019;50:62–70.</description><identifier>ISSN: 1053-1807</identifier><identifier>EISSN: 1522-2586</identifier><identifier>DOI: 10.1002/jmri.26606</identifier><identifier>PMID: 30569494</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>Aliasing ; Brain ; Computer simulation ; Dipoles ; Errors ; Field strength ; Image processing ; Image segmentation ; In vivo methods and tests ; Iterative methods ; Magnetic resonance imaging ; Masking ; Medical imaging ; Monte Carlo simulation ; Morphology ; Neuroimaging ; Noise levels ; Pelvis ; Robustness ; Seeds ; Statistical analysis ; Statistical tests ; Surgery ; Three dimensional models</subject><ispartof>Journal of magnetic resonance imaging, 2019-07, Vol.50 (1), p.62-70</ispartof><rights>2018 International Society for Magnetic Resonance in Medicine</rights><rights>2018 International Society for Magnetic Resonance in Medicine.</rights><rights>2019 International Society for Magnetic Resonance in Medicine</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3576-71e1f50c7cd12f08daea7376567e70e430ba387ad9e0b1c2489adf85e2e5e5753</citedby><cites>FETCH-LOGICAL-c3576-71e1f50c7cd12f08daea7376567e70e430ba387ad9e0b1c2489adf85e2e5e5753</cites><orcidid>0000-0002-6673-6753</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjmri.26606$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjmri.26606$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,1427,27901,27902,45550,45551,46384,46808</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30569494$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ye, Yongquan</creatorcontrib><creatorcontrib>Zhou, Fei</creatorcontrib><creatorcontrib>Zong, Jinguang</creatorcontrib><creatorcontrib>Lyu, Jingyuan</creatorcontrib><creatorcontrib>Chen, Yanling</creatorcontrib><creatorcontrib>Zhang, Shuheng</creatorcontrib><creatorcontrib>Zhang, Weiguo</creatorcontrib><creatorcontrib>He, Qiang</creatorcontrib><creatorcontrib>Li, Xueping</creatorcontrib><creatorcontrib>Li, Ming</creatorcontrib><creatorcontrib>Zhang, Qinglei</creatorcontrib><creatorcontrib>Qing, Zhao</creatorcontrib><creatorcontrib>Zhang, Bing</creatorcontrib><title>Seed prioritized unwrapping (SPUN) for MR phase imaging</title><title>Journal of magnetic resonance imaging</title><addtitle>J Magn Reson Imaging</addtitle><description>Background
Region‐growing‐based phase unwrapping methods have the potential for lossless phase aliasing removal, but generally suffer from unwrapping error propagation associated with discontinuous phase and/or long calculation times. The tradeoff point between robustness and efficiency of phase unwrapping methods in the region‐growing category requires improvement.
Purpose
To demonstrate an accurate, robust, and efficient region‐growing phase unwrapping method for MR phase imaging applications.
Study Type
Prospective.
Subjects, Phantom
normal human subjects (10) / brain surgery patients (2) / water phantoms / computer simulation.
Field Strength/Sequence
3 T/gradient echo sequences (2D and 3D).
Assessment
A seed prioritized unwrapping (SPUN) method was developed based on single‐region growing, prioritizing only a portion (eg, 100 seeds or 1% seeds) of available seed voxels based on continuity quality during each region‐growing iteration. Computer simulation, phantom, and in vivo brain and pelvis scans were performed. The error rates, seed percentages, and calculation times were recorded and reported. SPUN unwrapped phase images were visually evaluated and compared with Laplacian unwrapped results.
Statistical Tests
Monte Carlo simulation was performed on a 3D dipole phase model with a signal‐to‐noise ratio (SNR) of 1–9 dB, to obtain the mean and standard deviation of calculation error rates and calculation times.
Results
Simulation revealed a very robust unwrapping performance of SPUN, reaching an error rate of <0.4% even with SNR as low as 1 dB. For all in vivo data, SPUN was able to robustly unwrap the phase images of modest SNR and complex morphology with visually minimal errors and fast calculation speed (eg, <4 min for 368 × 312 × 128 data) when using a proper seed priority number, eg, Nsp = 1 or 10 voxels for 2D and Nsp = 1% for 3D data.
Data Conclusion
SPUN offers very robust and fast region‐growing‐based phase unwrapping, and does not require any tissue masking or segmentation, nor poses a limitation over imaging parameters.
Level of Evidence: 3
Technical Efficacy: Stage 1
J. Magn. Reson. Imaging 2019;50:62–70.</description><subject>Aliasing</subject><subject>Brain</subject><subject>Computer simulation</subject><subject>Dipoles</subject><subject>Errors</subject><subject>Field strength</subject><subject>Image processing</subject><subject>Image segmentation</subject><subject>In vivo methods and tests</subject><subject>Iterative methods</subject><subject>Magnetic resonance imaging</subject><subject>Masking</subject><subject>Medical imaging</subject><subject>Monte Carlo simulation</subject><subject>Morphology</subject><subject>Neuroimaging</subject><subject>Noise levels</subject><subject>Pelvis</subject><subject>Robustness</subject><subject>Seeds</subject><subject>Statistical analysis</subject><subject>Statistical tests</subject><subject>Surgery</subject><subject>Three dimensional models</subject><issn>1053-1807</issn><issn>1522-2586</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwkAUhidGI4hufADTxA2aFOfS6UyXhnjBgBqQ9WRoT7GkN2doCD69g0UXLlydPzlf_pzzIXRO8IBgTG9WhckGNAxxeIC6hFPqUy7DQ5cxZz6RWHTQibUrjHEUBfwYdRjmYRREQReJGUDi1SarTLbOPl1uyo3RdZ2VS68_e50_X3lpZbzJ1KvftQUvK_TS7U7RUapzC2f72UPz-7u34aM_fnkYDW_Hfsy4CH1BgKQcxyJOCE2xTDRowUTIQwECQ8DwQjMpdBIBXpCYBjLSSSo5UODABWc91G97a1N9NGDXqshsDHmuS6gaqyjhESOSSOnQyz_oqmpM6a5TlAaEByyIdtR1S8WmstZAqtzzhTZbRbDa6VQ7nepbp4Mv9pXNooDkF_3x5wDSApssh-0_VeppMh21pV_BA31E</recordid><startdate>201907</startdate><enddate>201907</enddate><creator>Ye, Yongquan</creator><creator>Zhou, Fei</creator><creator>Zong, Jinguang</creator><creator>Lyu, Jingyuan</creator><creator>Chen, Yanling</creator><creator>Zhang, Shuheng</creator><creator>Zhang, Weiguo</creator><creator>He, Qiang</creator><creator>Li, Xueping</creator><creator>Li, Ming</creator><creator>Zhang, Qinglei</creator><creator>Qing, Zhao</creator><creator>Zhang, Bing</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6673-6753</orcidid></search><sort><creationdate>201907</creationdate><title>Seed prioritized unwrapping (SPUN) for MR phase imaging</title><author>Ye, Yongquan ; Zhou, Fei ; Zong, Jinguang ; Lyu, Jingyuan ; Chen, Yanling ; Zhang, Shuheng ; Zhang, Weiguo ; He, Qiang ; Li, Xueping ; Li, Ming ; Zhang, Qinglei ; Qing, Zhao ; Zhang, Bing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3576-71e1f50c7cd12f08daea7376567e70e430ba387ad9e0b1c2489adf85e2e5e5753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Aliasing</topic><topic>Brain</topic><topic>Computer simulation</topic><topic>Dipoles</topic><topic>Errors</topic><topic>Field strength</topic><topic>Image processing</topic><topic>Image segmentation</topic><topic>In vivo methods and tests</topic><topic>Iterative methods</topic><topic>Magnetic resonance imaging</topic><topic>Masking</topic><topic>Medical imaging</topic><topic>Monte Carlo simulation</topic><topic>Morphology</topic><topic>Neuroimaging</topic><topic>Noise levels</topic><topic>Pelvis</topic><topic>Robustness</topic><topic>Seeds</topic><topic>Statistical analysis</topic><topic>Statistical tests</topic><topic>Surgery</topic><topic>Three dimensional models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ye, Yongquan</creatorcontrib><creatorcontrib>Zhou, Fei</creatorcontrib><creatorcontrib>Zong, Jinguang</creatorcontrib><creatorcontrib>Lyu, Jingyuan</creatorcontrib><creatorcontrib>Chen, Yanling</creatorcontrib><creatorcontrib>Zhang, Shuheng</creatorcontrib><creatorcontrib>Zhang, Weiguo</creatorcontrib><creatorcontrib>He, Qiang</creatorcontrib><creatorcontrib>Li, Xueping</creatorcontrib><creatorcontrib>Li, Ming</creatorcontrib><creatorcontrib>Zhang, Qinglei</creatorcontrib><creatorcontrib>Qing, Zhao</creatorcontrib><creatorcontrib>Zhang, Bing</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of magnetic resonance imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ye, Yongquan</au><au>Zhou, Fei</au><au>Zong, Jinguang</au><au>Lyu, Jingyuan</au><au>Chen, Yanling</au><au>Zhang, Shuheng</au><au>Zhang, Weiguo</au><au>He, Qiang</au><au>Li, Xueping</au><au>Li, Ming</au><au>Zhang, Qinglei</au><au>Qing, Zhao</au><au>Zhang, Bing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Seed prioritized unwrapping (SPUN) for MR phase imaging</atitle><jtitle>Journal of magnetic resonance imaging</jtitle><addtitle>J Magn Reson Imaging</addtitle><date>2019-07</date><risdate>2019</risdate><volume>50</volume><issue>1</issue><spage>62</spage><epage>70</epage><pages>62-70</pages><issn>1053-1807</issn><eissn>1522-2586</eissn><abstract>Background
Region‐growing‐based phase unwrapping methods have the potential for lossless phase aliasing removal, but generally suffer from unwrapping error propagation associated with discontinuous phase and/or long calculation times. The tradeoff point between robustness and efficiency of phase unwrapping methods in the region‐growing category requires improvement.
Purpose
To demonstrate an accurate, robust, and efficient region‐growing phase unwrapping method for MR phase imaging applications.
Study Type
Prospective.
Subjects, Phantom
normal human subjects (10) / brain surgery patients (2) / water phantoms / computer simulation.
Field Strength/Sequence
3 T/gradient echo sequences (2D and 3D).
Assessment
A seed prioritized unwrapping (SPUN) method was developed based on single‐region growing, prioritizing only a portion (eg, 100 seeds or 1% seeds) of available seed voxels based on continuity quality during each region‐growing iteration. Computer simulation, phantom, and in vivo brain and pelvis scans were performed. The error rates, seed percentages, and calculation times were recorded and reported. SPUN unwrapped phase images were visually evaluated and compared with Laplacian unwrapped results.
Statistical Tests
Monte Carlo simulation was performed on a 3D dipole phase model with a signal‐to‐noise ratio (SNR) of 1–9 dB, to obtain the mean and standard deviation of calculation error rates and calculation times.
Results
Simulation revealed a very robust unwrapping performance of SPUN, reaching an error rate of <0.4% even with SNR as low as 1 dB. For all in vivo data, SPUN was able to robustly unwrap the phase images of modest SNR and complex morphology with visually minimal errors and fast calculation speed (eg, <4 min for 368 × 312 × 128 data) when using a proper seed priority number, eg, Nsp = 1 or 10 voxels for 2D and Nsp = 1% for 3D data.
Data Conclusion
SPUN offers very robust and fast region‐growing‐based phase unwrapping, and does not require any tissue masking or segmentation, nor poses a limitation over imaging parameters.
Level of Evidence: 3
Technical Efficacy: Stage 1
J. Magn. Reson. Imaging 2019;50:62–70.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>30569494</pmid><doi>10.1002/jmri.26606</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-6673-6753</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1053-1807 |
ispartof | Journal of magnetic resonance imaging, 2019-07, Vol.50 (1), p.62-70 |
issn | 1053-1807 1522-2586 |
language | eng |
recordid | cdi_proquest_miscellaneous_2159318188 |
source | Wiley Online Library Journals Frontfile Complete; Wiley Online Library Free Content |
subjects | Aliasing Brain Computer simulation Dipoles Errors Field strength Image processing Image segmentation In vivo methods and tests Iterative methods Magnetic resonance imaging Masking Medical imaging Monte Carlo simulation Morphology Neuroimaging Noise levels Pelvis Robustness Seeds Statistical analysis Statistical tests Surgery Three dimensional models |
title | Seed prioritized unwrapping (SPUN) for MR phase imaging |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T07%3A26%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Seed%20prioritized%20unwrapping%20(SPUN)%20for%20MR%20phase%20imaging&rft.jtitle=Journal%20of%20magnetic%20resonance%20imaging&rft.au=Ye,%20Yongquan&rft.date=2019-07&rft.volume=50&rft.issue=1&rft.spage=62&rft.epage=70&rft.pages=62-70&rft.issn=1053-1807&rft.eissn=1522-2586&rft_id=info:doi/10.1002/jmri.26606&rft_dat=%3Cproquest_cross%3E2159318188%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2241543498&rft_id=info:pmid/30569494&rfr_iscdi=true |