The SEM electron‐mirror effect in human tooth and synthetic hydroxyapatite samples

The characteristics of the electron‐mirror effect (EME) image depend on both the scanning electron microscope parameters and the sample's physical properties. The behavior of human tooth (dentin and enamel) and synthetic hydroxyapatite samples submitted to the EME procedure is presented in this...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Microscopy research and technique 2018-12, Vol.81 (12), p.1383-1396
Hauptverfasser: Reyes‐Gasga, José, Rodríguez‐Torres, José Antonio, Vargas‐Becerril, Nancy, Moreno‐Rios, Marisa, Rodríguez‐Gómez, Arturo, García‐García, Ramiro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1396
container_issue 12
container_start_page 1383
container_title Microscopy research and technique
container_volume 81
creator Reyes‐Gasga, José
Rodríguez‐Torres, José Antonio
Vargas‐Becerril, Nancy
Moreno‐Rios, Marisa
Rodríguez‐Gómez, Arturo
García‐García, Ramiro
description The characteristics of the electron‐mirror effect (EME) image depend on both the scanning electron microscope parameters and the sample's physical properties. The behavior of human tooth (dentin and enamel) and synthetic hydroxyapatite samples submitted to the EME procedure is presented in this work. Polyethylene terephthalate (PET) and epoxy resin, two good EME producers, were used for comparison. A distorted EME image was observed in the obtained dentin's surface, but enamel and synthetic hydroxyapatite surfaces did not produce the EME. After ex situ calcination treatments of the teeth at 700 and 1,200°C, the EME was observed in dentin, enamel, and synthetic hydroxyapatite, but highly deformed EME images were produced. We show that these last observations are the result of the well‐known charge‐edge effect. After EME analysis, the calculated dielectric constant was 8.7 for dentin and 3.8 for PET. Research Highlights Electron‐mirror effect (EME) was observed in dentin but not in enamel or synthetic hydroxyapatite. Highly deformed EME images are produced in all samples after calcination at above 700°C. For dentin the calculated dielectric constant was 8.7 and for PET is was 3.8.
doi_str_mv 10.1002/jemt.23092
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2159315212</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2158456178</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3572-fe67fbd4e1bd7da887c1242c00b76bbd96f29058508a31b4a842f08186a133663</originalsourceid><addsrcrecordid>eNp90MtKxDAUBuAgio6XjQ8gATciVHOSXtKlDOONEReO4K6k7Snt0DZjkqLd-Qg-o09ix6oLF67O4fDxc_gJOQR2Bozx8yU27owLFvMNMgEWR95wjTfXexB7MbCnHbJr7ZIxgAD8bbIjmBgW6U_IYlEifZjdUawxc0a3H2_vTWWMNhSLYjjRqqVl16iWOq1dSVWbU9u3rkRXZbTsc6Nfe7VSrnJIrWpWNdp9slWo2uLB99wjj5ezxfTam99f3Uwv5l4mgoh7BYZRkeY-QppHuZIyyoD7PGMsjcI0zeOw4DELZMCkEpD6Svq8YBJkqECIMBR75GTMXRn93KF1SVPZDOtatag7m3AIYgEBBz7Q4z90qTvTDt-tlfSDECI5qNNRZUZba7BIVqZqlOkTYMm662TddfLV9YCPviO7tMH8l_6UOwAYwUtVY_9PVHI7u1uMoZ8DTomR</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2158456178</pqid></control><display><type>article</type><title>The SEM electron‐mirror effect in human tooth and synthetic hydroxyapatite samples</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Reyes‐Gasga, José ; Rodríguez‐Torres, José Antonio ; Vargas‐Becerril, Nancy ; Moreno‐Rios, Marisa ; Rodríguez‐Gómez, Arturo ; García‐García, Ramiro</creator><creatorcontrib>Reyes‐Gasga, José ; Rodríguez‐Torres, José Antonio ; Vargas‐Becerril, Nancy ; Moreno‐Rios, Marisa ; Rodríguez‐Gómez, Arturo ; García‐García, Ramiro</creatorcontrib><description>The characteristics of the electron‐mirror effect (EME) image depend on both the scanning electron microscope parameters and the sample's physical properties. The behavior of human tooth (dentin and enamel) and synthetic hydroxyapatite samples submitted to the EME procedure is presented in this work. Polyethylene terephthalate (PET) and epoxy resin, two good EME producers, were used for comparison. A distorted EME image was observed in the obtained dentin's surface, but enamel and synthetic hydroxyapatite surfaces did not produce the EME. After ex situ calcination treatments of the teeth at 700 and 1,200°C, the EME was observed in dentin, enamel, and synthetic hydroxyapatite, but highly deformed EME images were produced. We show that these last observations are the result of the well‐known charge‐edge effect. After EME analysis, the calculated dielectric constant was 8.7 for dentin and 3.8 for PET. Research Highlights Electron‐mirror effect (EME) was observed in dentin but not in enamel or synthetic hydroxyapatite. Highly deformed EME images are produced in all samples after calcination at above 700°C. For dentin the calculated dielectric constant was 8.7 and for PET is was 3.8.</description><identifier>ISSN: 1059-910X</identifier><identifier>EISSN: 1097-0029</identifier><identifier>DOI: 10.1002/jemt.23092</identifier><identifier>PMID: 30351484</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>charge effect ; Composite Resins - chemistry ; Deformation ; Dental enamel ; Dental Enamel - chemistry ; Dental Enamel - ultrastructure ; Dentin ; Dentin - chemistry ; Dentin - ultrastructure ; dentine ; Dielectric constant ; dielectrics ; Durapatite - chemical synthesis ; Durapatite - chemistry ; Edge effect ; electron mirror effect ; Enamel ; Epoxy resins ; Human behavior ; Humans ; Hydroxyapatite ; Mathematical analysis ; Microscopy, Electron, Scanning ; Permittivity ; Physical properties ; Polyethylene ; Polyethylene terephthalate ; Polyethylene Terephthalates - chemistry ; Roasting ; Scanning electron microscopy ; SEM ; Teeth ; Temperature</subject><ispartof>Microscopy research and technique, 2018-12, Vol.81 (12), p.1383-1396</ispartof><rights>2018 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3572-fe67fbd4e1bd7da887c1242c00b76bbd96f29058508a31b4a842f08186a133663</citedby><cites>FETCH-LOGICAL-c3572-fe67fbd4e1bd7da887c1242c00b76bbd96f29058508a31b4a842f08186a133663</cites><orcidid>0000-0002-9918-6196</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjemt.23092$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjemt.23092$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30351484$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Reyes‐Gasga, José</creatorcontrib><creatorcontrib>Rodríguez‐Torres, José Antonio</creatorcontrib><creatorcontrib>Vargas‐Becerril, Nancy</creatorcontrib><creatorcontrib>Moreno‐Rios, Marisa</creatorcontrib><creatorcontrib>Rodríguez‐Gómez, Arturo</creatorcontrib><creatorcontrib>García‐García, Ramiro</creatorcontrib><title>The SEM electron‐mirror effect in human tooth and synthetic hydroxyapatite samples</title><title>Microscopy research and technique</title><addtitle>Microsc Res Tech</addtitle><description>The characteristics of the electron‐mirror effect (EME) image depend on both the scanning electron microscope parameters and the sample's physical properties. The behavior of human tooth (dentin and enamel) and synthetic hydroxyapatite samples submitted to the EME procedure is presented in this work. Polyethylene terephthalate (PET) and epoxy resin, two good EME producers, were used for comparison. A distorted EME image was observed in the obtained dentin's surface, but enamel and synthetic hydroxyapatite surfaces did not produce the EME. After ex situ calcination treatments of the teeth at 700 and 1,200°C, the EME was observed in dentin, enamel, and synthetic hydroxyapatite, but highly deformed EME images were produced. We show that these last observations are the result of the well‐known charge‐edge effect. After EME analysis, the calculated dielectric constant was 8.7 for dentin and 3.8 for PET. Research Highlights Electron‐mirror effect (EME) was observed in dentin but not in enamel or synthetic hydroxyapatite. Highly deformed EME images are produced in all samples after calcination at above 700°C. For dentin the calculated dielectric constant was 8.7 and for PET is was 3.8.</description><subject>charge effect</subject><subject>Composite Resins - chemistry</subject><subject>Deformation</subject><subject>Dental enamel</subject><subject>Dental Enamel - chemistry</subject><subject>Dental Enamel - ultrastructure</subject><subject>Dentin</subject><subject>Dentin - chemistry</subject><subject>Dentin - ultrastructure</subject><subject>dentine</subject><subject>Dielectric constant</subject><subject>dielectrics</subject><subject>Durapatite - chemical synthesis</subject><subject>Durapatite - chemistry</subject><subject>Edge effect</subject><subject>electron mirror effect</subject><subject>Enamel</subject><subject>Epoxy resins</subject><subject>Human behavior</subject><subject>Humans</subject><subject>Hydroxyapatite</subject><subject>Mathematical analysis</subject><subject>Microscopy, Electron, Scanning</subject><subject>Permittivity</subject><subject>Physical properties</subject><subject>Polyethylene</subject><subject>Polyethylene terephthalate</subject><subject>Polyethylene Terephthalates - chemistry</subject><subject>Roasting</subject><subject>Scanning electron microscopy</subject><subject>SEM</subject><subject>Teeth</subject><subject>Temperature</subject><issn>1059-910X</issn><issn>1097-0029</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp90MtKxDAUBuAgio6XjQ8gATciVHOSXtKlDOONEReO4K6k7Snt0DZjkqLd-Qg-o09ix6oLF67O4fDxc_gJOQR2Bozx8yU27owLFvMNMgEWR95wjTfXexB7MbCnHbJr7ZIxgAD8bbIjmBgW6U_IYlEifZjdUawxc0a3H2_vTWWMNhSLYjjRqqVl16iWOq1dSVWbU9u3rkRXZbTsc6Nfe7VSrnJIrWpWNdp9slWo2uLB99wjj5ezxfTam99f3Uwv5l4mgoh7BYZRkeY-QppHuZIyyoD7PGMsjcI0zeOw4DELZMCkEpD6Svq8YBJkqECIMBR75GTMXRn93KF1SVPZDOtatag7m3AIYgEBBz7Q4z90qTvTDt-tlfSDECI5qNNRZUZba7BIVqZqlOkTYMm662TddfLV9YCPviO7tMH8l_6UOwAYwUtVY_9PVHI7u1uMoZ8DTomR</recordid><startdate>201812</startdate><enddate>201812</enddate><creator>Reyes‐Gasga, José</creator><creator>Rodríguez‐Torres, José Antonio</creator><creator>Vargas‐Becerril, Nancy</creator><creator>Moreno‐Rios, Marisa</creator><creator>Rodríguez‐Gómez, Arturo</creator><creator>García‐García, Ramiro</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QP</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7U7</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9918-6196</orcidid></search><sort><creationdate>201812</creationdate><title>The SEM electron‐mirror effect in human tooth and synthetic hydroxyapatite samples</title><author>Reyes‐Gasga, José ; Rodríguez‐Torres, José Antonio ; Vargas‐Becerril, Nancy ; Moreno‐Rios, Marisa ; Rodríguez‐Gómez, Arturo ; García‐García, Ramiro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3572-fe67fbd4e1bd7da887c1242c00b76bbd96f29058508a31b4a842f08186a133663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>charge effect</topic><topic>Composite Resins - chemistry</topic><topic>Deformation</topic><topic>Dental enamel</topic><topic>Dental Enamel - chemistry</topic><topic>Dental Enamel - ultrastructure</topic><topic>Dentin</topic><topic>Dentin - chemistry</topic><topic>Dentin - ultrastructure</topic><topic>dentine</topic><topic>Dielectric constant</topic><topic>dielectrics</topic><topic>Durapatite - chemical synthesis</topic><topic>Durapatite - chemistry</topic><topic>Edge effect</topic><topic>electron mirror effect</topic><topic>Enamel</topic><topic>Epoxy resins</topic><topic>Human behavior</topic><topic>Humans</topic><topic>Hydroxyapatite</topic><topic>Mathematical analysis</topic><topic>Microscopy, Electron, Scanning</topic><topic>Permittivity</topic><topic>Physical properties</topic><topic>Polyethylene</topic><topic>Polyethylene terephthalate</topic><topic>Polyethylene Terephthalates - chemistry</topic><topic>Roasting</topic><topic>Scanning electron microscopy</topic><topic>SEM</topic><topic>Teeth</topic><topic>Temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Reyes‐Gasga, José</creatorcontrib><creatorcontrib>Rodríguez‐Torres, José Antonio</creatorcontrib><creatorcontrib>Vargas‐Becerril, Nancy</creatorcontrib><creatorcontrib>Moreno‐Rios, Marisa</creatorcontrib><creatorcontrib>Rodríguez‐Gómez, Arturo</creatorcontrib><creatorcontrib>García‐García, Ramiro</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Microscopy research and technique</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Reyes‐Gasga, José</au><au>Rodríguez‐Torres, José Antonio</au><au>Vargas‐Becerril, Nancy</au><au>Moreno‐Rios, Marisa</au><au>Rodríguez‐Gómez, Arturo</au><au>García‐García, Ramiro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The SEM electron‐mirror effect in human tooth and synthetic hydroxyapatite samples</atitle><jtitle>Microscopy research and technique</jtitle><addtitle>Microsc Res Tech</addtitle><date>2018-12</date><risdate>2018</risdate><volume>81</volume><issue>12</issue><spage>1383</spage><epage>1396</epage><pages>1383-1396</pages><issn>1059-910X</issn><eissn>1097-0029</eissn><abstract>The characteristics of the electron‐mirror effect (EME) image depend on both the scanning electron microscope parameters and the sample's physical properties. The behavior of human tooth (dentin and enamel) and synthetic hydroxyapatite samples submitted to the EME procedure is presented in this work. Polyethylene terephthalate (PET) and epoxy resin, two good EME producers, were used for comparison. A distorted EME image was observed in the obtained dentin's surface, but enamel and synthetic hydroxyapatite surfaces did not produce the EME. After ex situ calcination treatments of the teeth at 700 and 1,200°C, the EME was observed in dentin, enamel, and synthetic hydroxyapatite, but highly deformed EME images were produced. We show that these last observations are the result of the well‐known charge‐edge effect. After EME analysis, the calculated dielectric constant was 8.7 for dentin and 3.8 for PET. Research Highlights Electron‐mirror effect (EME) was observed in dentin but not in enamel or synthetic hydroxyapatite. Highly deformed EME images are produced in all samples after calcination at above 700°C. For dentin the calculated dielectric constant was 8.7 and for PET is was 3.8.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>30351484</pmid><doi>10.1002/jemt.23092</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-9918-6196</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1059-910X
ispartof Microscopy research and technique, 2018-12, Vol.81 (12), p.1383-1396
issn 1059-910X
1097-0029
language eng
recordid cdi_proquest_miscellaneous_2159315212
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects charge effect
Composite Resins - chemistry
Deformation
Dental enamel
Dental Enamel - chemistry
Dental Enamel - ultrastructure
Dentin
Dentin - chemistry
Dentin - ultrastructure
dentine
Dielectric constant
dielectrics
Durapatite - chemical synthesis
Durapatite - chemistry
Edge effect
electron mirror effect
Enamel
Epoxy resins
Human behavior
Humans
Hydroxyapatite
Mathematical analysis
Microscopy, Electron, Scanning
Permittivity
Physical properties
Polyethylene
Polyethylene terephthalate
Polyethylene Terephthalates - chemistry
Roasting
Scanning electron microscopy
SEM
Teeth
Temperature
title The SEM electron‐mirror effect in human tooth and synthetic hydroxyapatite samples
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T10%3A33%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20SEM%20electron%E2%80%90mirror%20effect%20in%20human%20tooth%20and%20synthetic%20hydroxyapatite%20samples&rft.jtitle=Microscopy%20research%20and%20technique&rft.au=Reyes%E2%80%90Gasga,%20Jos%C3%A9&rft.date=2018-12&rft.volume=81&rft.issue=12&rft.spage=1383&rft.epage=1396&rft.pages=1383-1396&rft.issn=1059-910X&rft.eissn=1097-0029&rft_id=info:doi/10.1002/jemt.23092&rft_dat=%3Cproquest_cross%3E2158456178%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2158456178&rft_id=info:pmid/30351484&rfr_iscdi=true