The SEM electron‐mirror effect in human tooth and synthetic hydroxyapatite samples
The characteristics of the electron‐mirror effect (EME) image depend on both the scanning electron microscope parameters and the sample's physical properties. The behavior of human tooth (dentin and enamel) and synthetic hydroxyapatite samples submitted to the EME procedure is presented in this...
Gespeichert in:
Veröffentlicht in: | Microscopy research and technique 2018-12, Vol.81 (12), p.1383-1396 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1396 |
---|---|
container_issue | 12 |
container_start_page | 1383 |
container_title | Microscopy research and technique |
container_volume | 81 |
creator | Reyes‐Gasga, José Rodríguez‐Torres, José Antonio Vargas‐Becerril, Nancy Moreno‐Rios, Marisa Rodríguez‐Gómez, Arturo García‐García, Ramiro |
description | The characteristics of the electron‐mirror effect (EME) image depend on both the scanning electron microscope parameters and the sample's physical properties. The behavior of human tooth (dentin and enamel) and synthetic hydroxyapatite samples submitted to the EME procedure is presented in this work. Polyethylene terephthalate (PET) and epoxy resin, two good EME producers, were used for comparison. A distorted EME image was observed in the obtained dentin's surface, but enamel and synthetic hydroxyapatite surfaces did not produce the EME. After ex situ calcination treatments of the teeth at 700 and 1,200°C, the EME was observed in dentin, enamel, and synthetic hydroxyapatite, but highly deformed EME images were produced. We show that these last observations are the result of the well‐known charge‐edge effect. After EME analysis, the calculated dielectric constant was 8.7 for dentin and 3.8 for PET.
Research Highlights
Electron‐mirror effect (EME) was observed in dentin but not in enamel or synthetic hydroxyapatite.
Highly deformed EME images are produced in all samples after calcination at above 700°C.
For dentin the calculated dielectric constant was 8.7 and for PET is was 3.8. |
doi_str_mv | 10.1002/jemt.23092 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2159315212</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2158456178</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3572-fe67fbd4e1bd7da887c1242c00b76bbd96f29058508a31b4a842f08186a133663</originalsourceid><addsrcrecordid>eNp90MtKxDAUBuAgio6XjQ8gATciVHOSXtKlDOONEReO4K6k7Snt0DZjkqLd-Qg-o09ix6oLF67O4fDxc_gJOQR2Bozx8yU27owLFvMNMgEWR95wjTfXexB7MbCnHbJr7ZIxgAD8bbIjmBgW6U_IYlEifZjdUawxc0a3H2_vTWWMNhSLYjjRqqVl16iWOq1dSVWbU9u3rkRXZbTsc6Nfe7VSrnJIrWpWNdp9slWo2uLB99wjj5ezxfTam99f3Uwv5l4mgoh7BYZRkeY-QppHuZIyyoD7PGMsjcI0zeOw4DELZMCkEpD6Svq8YBJkqECIMBR75GTMXRn93KF1SVPZDOtatag7m3AIYgEBBz7Q4z90qTvTDt-tlfSDECI5qNNRZUZba7BIVqZqlOkTYMm662TddfLV9YCPviO7tMH8l_6UOwAYwUtVY_9PVHI7u1uMoZ8DTomR</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2158456178</pqid></control><display><type>article</type><title>The SEM electron‐mirror effect in human tooth and synthetic hydroxyapatite samples</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Reyes‐Gasga, José ; Rodríguez‐Torres, José Antonio ; Vargas‐Becerril, Nancy ; Moreno‐Rios, Marisa ; Rodríguez‐Gómez, Arturo ; García‐García, Ramiro</creator><creatorcontrib>Reyes‐Gasga, José ; Rodríguez‐Torres, José Antonio ; Vargas‐Becerril, Nancy ; Moreno‐Rios, Marisa ; Rodríguez‐Gómez, Arturo ; García‐García, Ramiro</creatorcontrib><description>The characteristics of the electron‐mirror effect (EME) image depend on both the scanning electron microscope parameters and the sample's physical properties. The behavior of human tooth (dentin and enamel) and synthetic hydroxyapatite samples submitted to the EME procedure is presented in this work. Polyethylene terephthalate (PET) and epoxy resin, two good EME producers, were used for comparison. A distorted EME image was observed in the obtained dentin's surface, but enamel and synthetic hydroxyapatite surfaces did not produce the EME. After ex situ calcination treatments of the teeth at 700 and 1,200°C, the EME was observed in dentin, enamel, and synthetic hydroxyapatite, but highly deformed EME images were produced. We show that these last observations are the result of the well‐known charge‐edge effect. After EME analysis, the calculated dielectric constant was 8.7 for dentin and 3.8 for PET.
Research Highlights
Electron‐mirror effect (EME) was observed in dentin but not in enamel or synthetic hydroxyapatite.
Highly deformed EME images are produced in all samples after calcination at above 700°C.
For dentin the calculated dielectric constant was 8.7 and for PET is was 3.8.</description><identifier>ISSN: 1059-910X</identifier><identifier>EISSN: 1097-0029</identifier><identifier>DOI: 10.1002/jemt.23092</identifier><identifier>PMID: 30351484</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>charge effect ; Composite Resins - chemistry ; Deformation ; Dental enamel ; Dental Enamel - chemistry ; Dental Enamel - ultrastructure ; Dentin ; Dentin - chemistry ; Dentin - ultrastructure ; dentine ; Dielectric constant ; dielectrics ; Durapatite - chemical synthesis ; Durapatite - chemistry ; Edge effect ; electron mirror effect ; Enamel ; Epoxy resins ; Human behavior ; Humans ; Hydroxyapatite ; Mathematical analysis ; Microscopy, Electron, Scanning ; Permittivity ; Physical properties ; Polyethylene ; Polyethylene terephthalate ; Polyethylene Terephthalates - chemistry ; Roasting ; Scanning electron microscopy ; SEM ; Teeth ; Temperature</subject><ispartof>Microscopy research and technique, 2018-12, Vol.81 (12), p.1383-1396</ispartof><rights>2018 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3572-fe67fbd4e1bd7da887c1242c00b76bbd96f29058508a31b4a842f08186a133663</citedby><cites>FETCH-LOGICAL-c3572-fe67fbd4e1bd7da887c1242c00b76bbd96f29058508a31b4a842f08186a133663</cites><orcidid>0000-0002-9918-6196</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjemt.23092$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjemt.23092$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30351484$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Reyes‐Gasga, José</creatorcontrib><creatorcontrib>Rodríguez‐Torres, José Antonio</creatorcontrib><creatorcontrib>Vargas‐Becerril, Nancy</creatorcontrib><creatorcontrib>Moreno‐Rios, Marisa</creatorcontrib><creatorcontrib>Rodríguez‐Gómez, Arturo</creatorcontrib><creatorcontrib>García‐García, Ramiro</creatorcontrib><title>The SEM electron‐mirror effect in human tooth and synthetic hydroxyapatite samples</title><title>Microscopy research and technique</title><addtitle>Microsc Res Tech</addtitle><description>The characteristics of the electron‐mirror effect (EME) image depend on both the scanning electron microscope parameters and the sample's physical properties. The behavior of human tooth (dentin and enamel) and synthetic hydroxyapatite samples submitted to the EME procedure is presented in this work. Polyethylene terephthalate (PET) and epoxy resin, two good EME producers, were used for comparison. A distorted EME image was observed in the obtained dentin's surface, but enamel and synthetic hydroxyapatite surfaces did not produce the EME. After ex situ calcination treatments of the teeth at 700 and 1,200°C, the EME was observed in dentin, enamel, and synthetic hydroxyapatite, but highly deformed EME images were produced. We show that these last observations are the result of the well‐known charge‐edge effect. After EME analysis, the calculated dielectric constant was 8.7 for dentin and 3.8 for PET.
Research Highlights
Electron‐mirror effect (EME) was observed in dentin but not in enamel or synthetic hydroxyapatite.
Highly deformed EME images are produced in all samples after calcination at above 700°C.
For dentin the calculated dielectric constant was 8.7 and for PET is was 3.8.</description><subject>charge effect</subject><subject>Composite Resins - chemistry</subject><subject>Deformation</subject><subject>Dental enamel</subject><subject>Dental Enamel - chemistry</subject><subject>Dental Enamel - ultrastructure</subject><subject>Dentin</subject><subject>Dentin - chemistry</subject><subject>Dentin - ultrastructure</subject><subject>dentine</subject><subject>Dielectric constant</subject><subject>dielectrics</subject><subject>Durapatite - chemical synthesis</subject><subject>Durapatite - chemistry</subject><subject>Edge effect</subject><subject>electron mirror effect</subject><subject>Enamel</subject><subject>Epoxy resins</subject><subject>Human behavior</subject><subject>Humans</subject><subject>Hydroxyapatite</subject><subject>Mathematical analysis</subject><subject>Microscopy, Electron, Scanning</subject><subject>Permittivity</subject><subject>Physical properties</subject><subject>Polyethylene</subject><subject>Polyethylene terephthalate</subject><subject>Polyethylene Terephthalates - chemistry</subject><subject>Roasting</subject><subject>Scanning electron microscopy</subject><subject>SEM</subject><subject>Teeth</subject><subject>Temperature</subject><issn>1059-910X</issn><issn>1097-0029</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp90MtKxDAUBuAgio6XjQ8gATciVHOSXtKlDOONEReO4K6k7Snt0DZjkqLd-Qg-o09ix6oLF67O4fDxc_gJOQR2Bozx8yU27owLFvMNMgEWR95wjTfXexB7MbCnHbJr7ZIxgAD8bbIjmBgW6U_IYlEifZjdUawxc0a3H2_vTWWMNhSLYjjRqqVl16iWOq1dSVWbU9u3rkRXZbTsc6Nfe7VSrnJIrWpWNdp9slWo2uLB99wjj5ezxfTam99f3Uwv5l4mgoh7BYZRkeY-QppHuZIyyoD7PGMsjcI0zeOw4DELZMCkEpD6Svq8YBJkqECIMBR75GTMXRn93KF1SVPZDOtatag7m3AIYgEBBz7Q4z90qTvTDt-tlfSDECI5qNNRZUZba7BIVqZqlOkTYMm662TddfLV9YCPviO7tMH8l_6UOwAYwUtVY_9PVHI7u1uMoZ8DTomR</recordid><startdate>201812</startdate><enddate>201812</enddate><creator>Reyes‐Gasga, José</creator><creator>Rodríguez‐Torres, José Antonio</creator><creator>Vargas‐Becerril, Nancy</creator><creator>Moreno‐Rios, Marisa</creator><creator>Rodríguez‐Gómez, Arturo</creator><creator>García‐García, Ramiro</creator><general>John Wiley & Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QP</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7U7</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9918-6196</orcidid></search><sort><creationdate>201812</creationdate><title>The SEM electron‐mirror effect in human tooth and synthetic hydroxyapatite samples</title><author>Reyes‐Gasga, José ; Rodríguez‐Torres, José Antonio ; Vargas‐Becerril, Nancy ; Moreno‐Rios, Marisa ; Rodríguez‐Gómez, Arturo ; García‐García, Ramiro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3572-fe67fbd4e1bd7da887c1242c00b76bbd96f29058508a31b4a842f08186a133663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>charge effect</topic><topic>Composite Resins - chemistry</topic><topic>Deformation</topic><topic>Dental enamel</topic><topic>Dental Enamel - chemistry</topic><topic>Dental Enamel - ultrastructure</topic><topic>Dentin</topic><topic>Dentin - chemistry</topic><topic>Dentin - ultrastructure</topic><topic>dentine</topic><topic>Dielectric constant</topic><topic>dielectrics</topic><topic>Durapatite - chemical synthesis</topic><topic>Durapatite - chemistry</topic><topic>Edge effect</topic><topic>electron mirror effect</topic><topic>Enamel</topic><topic>Epoxy resins</topic><topic>Human behavior</topic><topic>Humans</topic><topic>Hydroxyapatite</topic><topic>Mathematical analysis</topic><topic>Microscopy, Electron, Scanning</topic><topic>Permittivity</topic><topic>Physical properties</topic><topic>Polyethylene</topic><topic>Polyethylene terephthalate</topic><topic>Polyethylene Terephthalates - chemistry</topic><topic>Roasting</topic><topic>Scanning electron microscopy</topic><topic>SEM</topic><topic>Teeth</topic><topic>Temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Reyes‐Gasga, José</creatorcontrib><creatorcontrib>Rodríguez‐Torres, José Antonio</creatorcontrib><creatorcontrib>Vargas‐Becerril, Nancy</creatorcontrib><creatorcontrib>Moreno‐Rios, Marisa</creatorcontrib><creatorcontrib>Rodríguez‐Gómez, Arturo</creatorcontrib><creatorcontrib>García‐García, Ramiro</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Microscopy research and technique</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Reyes‐Gasga, José</au><au>Rodríguez‐Torres, José Antonio</au><au>Vargas‐Becerril, Nancy</au><au>Moreno‐Rios, Marisa</au><au>Rodríguez‐Gómez, Arturo</au><au>García‐García, Ramiro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The SEM electron‐mirror effect in human tooth and synthetic hydroxyapatite samples</atitle><jtitle>Microscopy research and technique</jtitle><addtitle>Microsc Res Tech</addtitle><date>2018-12</date><risdate>2018</risdate><volume>81</volume><issue>12</issue><spage>1383</spage><epage>1396</epage><pages>1383-1396</pages><issn>1059-910X</issn><eissn>1097-0029</eissn><abstract>The characteristics of the electron‐mirror effect (EME) image depend on both the scanning electron microscope parameters and the sample's physical properties. The behavior of human tooth (dentin and enamel) and synthetic hydroxyapatite samples submitted to the EME procedure is presented in this work. Polyethylene terephthalate (PET) and epoxy resin, two good EME producers, were used for comparison. A distorted EME image was observed in the obtained dentin's surface, but enamel and synthetic hydroxyapatite surfaces did not produce the EME. After ex situ calcination treatments of the teeth at 700 and 1,200°C, the EME was observed in dentin, enamel, and synthetic hydroxyapatite, but highly deformed EME images were produced. We show that these last observations are the result of the well‐known charge‐edge effect. After EME analysis, the calculated dielectric constant was 8.7 for dentin and 3.8 for PET.
Research Highlights
Electron‐mirror effect (EME) was observed in dentin but not in enamel or synthetic hydroxyapatite.
Highly deformed EME images are produced in all samples after calcination at above 700°C.
For dentin the calculated dielectric constant was 8.7 and for PET is was 3.8.</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><pmid>30351484</pmid><doi>10.1002/jemt.23092</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-9918-6196</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1059-910X |
ispartof | Microscopy research and technique, 2018-12, Vol.81 (12), p.1383-1396 |
issn | 1059-910X 1097-0029 |
language | eng |
recordid | cdi_proquest_miscellaneous_2159315212 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | charge effect Composite Resins - chemistry Deformation Dental enamel Dental Enamel - chemistry Dental Enamel - ultrastructure Dentin Dentin - chemistry Dentin - ultrastructure dentine Dielectric constant dielectrics Durapatite - chemical synthesis Durapatite - chemistry Edge effect electron mirror effect Enamel Epoxy resins Human behavior Humans Hydroxyapatite Mathematical analysis Microscopy, Electron, Scanning Permittivity Physical properties Polyethylene Polyethylene terephthalate Polyethylene Terephthalates - chemistry Roasting Scanning electron microscopy SEM Teeth Temperature |
title | The SEM electron‐mirror effect in human tooth and synthetic hydroxyapatite samples |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T10%3A33%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20SEM%20electron%E2%80%90mirror%20effect%20in%20human%20tooth%20and%20synthetic%20hydroxyapatite%20samples&rft.jtitle=Microscopy%20research%20and%20technique&rft.au=Reyes%E2%80%90Gasga,%20Jos%C3%A9&rft.date=2018-12&rft.volume=81&rft.issue=12&rft.spage=1383&rft.epage=1396&rft.pages=1383-1396&rft.issn=1059-910X&rft.eissn=1097-0029&rft_id=info:doi/10.1002/jemt.23092&rft_dat=%3Cproquest_cross%3E2158456178%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2158456178&rft_id=info:pmid/30351484&rfr_iscdi=true |