Nematic liquid crystals of bifunctional patchy spheres
. Anisotropic interactions can bring about the formation, through self-assembly, of semi-flexible chains, which in turn can give rise to nematic phases for suitable temperatures and concentrations. A minimalist model constituted of hard cylinders decorated with attractive sites has been already exte...
Gespeichert in:
Veröffentlicht in: | The European physical journal. E, Soft matter and biological physics Soft matter and biological physics, 2018-12, Vol.41 (12), p.141-9, Article 141 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9 |
---|---|
container_issue | 12 |
container_start_page | 141 |
container_title | The European physical journal. E, Soft matter and biological physics |
container_volume | 41 |
creator | Nguyen, Khanh Thuy De Michele, Cristiano |
description | .
Anisotropic interactions can bring about the formation, through self-assembly, of semi-flexible chains, which in turn can give rise to nematic phases for suitable temperatures and concentrations. A minimalist model constituted of hard cylinders decorated with attractive sites has been already extensively studied numerically. Simulation data shows that a theoretical approach recently proposed is able to properly capture the physical properties of these self-assembly-driven liquid crystals. Here, we investigated a simpler model constituted of bifunctional Kern-Frenkel hard spheres which does not possess steric anisotropy but which can undergo a istropic-nematic transition as a result of their self-assembly into semi-flexible chains. For this model we compare an accurate numerical estimate of isotropic-nematic phase boundaries with theoretical predictions. The theoretical treatment, originally proposed for cylinder-like particles, has been greatly simplified and its predictions are in good agreement with numerical results. Finally, we also assess a crucial, and not obvious, hypothesis used in the theory,
i.e.
the ability of the Onsager trial function to properly model particle orientation in the presence of aggregation, that has not been properly checked yet.
Graphical abstract |
doi_str_mv | 10.1140/epje/i2018-11750-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2157666845</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2156541774</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-67ddabb2ebf715e245023024c49f319780da08cbb5b6f0ce756fd2db463027213</originalsourceid><addsrcrecordid>eNp9kMtKAzEUhoMotlZfwIUMuHEzNsnkMrOUUi9QdKPgLiSZxKbMrcnMom9verGCC1c5kO__z-ED4BrBe4QInJpuZaYOQ5SnCHEKU3ICxggXOM0L-nl6nAkagYsQVhDCGMvOwSiDlGKK-BiwV1PL3umkcuvBlYn2m9DLKiStTZSzQ6N71zaySjrZ6-UmCd3SeBMuwZmNlLk6vBPw8Th_nz2ni7enl9nDItUZp33KeFlKpbBRliNqMKEQZxATTQqboYLnsJQw10pRxSzUhlNmS1wqwiLFMcom4G7f2_l2PZjQi9oFbapKNqYdgsCIcsZYTmhEb_-gq3bw8fQdxShBnJNI4T2lfRuCN1Z03tXSbwSCYmtVbK2KnVWxsyq2oZtD9aBqUx4jPxojkO2BEL-aL-N_d_9T-w09v4NS</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2156541774</pqid></control><display><type>article</type><title>Nematic liquid crystals of bifunctional patchy spheres</title><source>Springer Nature - Complete Springer Journals</source><creator>Nguyen, Khanh Thuy ; De Michele, Cristiano</creator><creatorcontrib>Nguyen, Khanh Thuy ; De Michele, Cristiano</creatorcontrib><description>.
Anisotropic interactions can bring about the formation, through self-assembly, of semi-flexible chains, which in turn can give rise to nematic phases for suitable temperatures and concentrations. A minimalist model constituted of hard cylinders decorated with attractive sites has been already extensively studied numerically. Simulation data shows that a theoretical approach recently proposed is able to properly capture the physical properties of these self-assembly-driven liquid crystals. Here, we investigated a simpler model constituted of bifunctional Kern-Frenkel hard spheres which does not possess steric anisotropy but which can undergo a istropic-nematic transition as a result of their self-assembly into semi-flexible chains. For this model we compare an accurate numerical estimate of isotropic-nematic phase boundaries with theoretical predictions. The theoretical treatment, originally proposed for cylinder-like particles, has been greatly simplified and its predictions are in good agreement with numerical results. Finally, we also assess a crucial, and not obvious, hypothesis used in the theory,
i.e.
the ability of the Onsager trial function to properly model particle orientation in the presence of aggregation, that has not been properly checked yet.
Graphical abstract</description><identifier>ISSN: 1292-8941</identifier><identifier>EISSN: 1292-895X</identifier><identifier>DOI: 10.1140/epje/i2018-11750-4</identifier><identifier>PMID: 30552517</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Anisotropy ; Biological and Medical Physics ; Biophysics ; Chains ; Complex Fluids and Microfluidics ; Complex Systems ; Computer simulation ; Condensed matter physics ; Cylinders ; Liquid crystals ; Mathematical models ; Nanotechnology ; Nematic crystals ; Physical properties ; Physics ; Physics and Astronomy ; Polymer Sciences ; Regular Article ; Self-assembly ; Soft and Granular Matter ; Surfaces and Interfaces ; Thin Films</subject><ispartof>The European physical journal. E, Soft matter and biological physics, 2018-12, Vol.41 (12), p.141-9, Article 141</ispartof><rights>EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018</rights><rights>Copyright Springer Nature B.V. 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-67ddabb2ebf715e245023024c49f319780da08cbb5b6f0ce756fd2db463027213</citedby><cites>FETCH-LOGICAL-c375t-67ddabb2ebf715e245023024c49f319780da08cbb5b6f0ce756fd2db463027213</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1140/epje/i2018-11750-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1140/epje/i2018-11750-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30552517$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nguyen, Khanh Thuy</creatorcontrib><creatorcontrib>De Michele, Cristiano</creatorcontrib><title>Nematic liquid crystals of bifunctional patchy spheres</title><title>The European physical journal. E, Soft matter and biological physics</title><addtitle>Eur. Phys. J. E</addtitle><addtitle>Eur Phys J E Soft Matter</addtitle><description>.
Anisotropic interactions can bring about the formation, through self-assembly, of semi-flexible chains, which in turn can give rise to nematic phases for suitable temperatures and concentrations. A minimalist model constituted of hard cylinders decorated with attractive sites has been already extensively studied numerically. Simulation data shows that a theoretical approach recently proposed is able to properly capture the physical properties of these self-assembly-driven liquid crystals. Here, we investigated a simpler model constituted of bifunctional Kern-Frenkel hard spheres which does not possess steric anisotropy but which can undergo a istropic-nematic transition as a result of their self-assembly into semi-flexible chains. For this model we compare an accurate numerical estimate of isotropic-nematic phase boundaries with theoretical predictions. The theoretical treatment, originally proposed for cylinder-like particles, has been greatly simplified and its predictions are in good agreement with numerical results. Finally, we also assess a crucial, and not obvious, hypothesis used in the theory,
i.e.
the ability of the Onsager trial function to properly model particle orientation in the presence of aggregation, that has not been properly checked yet.
Graphical abstract</description><subject>Anisotropy</subject><subject>Biological and Medical Physics</subject><subject>Biophysics</subject><subject>Chains</subject><subject>Complex Fluids and Microfluidics</subject><subject>Complex Systems</subject><subject>Computer simulation</subject><subject>Condensed matter physics</subject><subject>Cylinders</subject><subject>Liquid crystals</subject><subject>Mathematical models</subject><subject>Nanotechnology</subject><subject>Nematic crystals</subject><subject>Physical properties</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Polymer Sciences</subject><subject>Regular Article</subject><subject>Self-assembly</subject><subject>Soft and Granular Matter</subject><subject>Surfaces and Interfaces</subject><subject>Thin Films</subject><issn>1292-8941</issn><issn>1292-895X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKAzEUhoMotlZfwIUMuHEzNsnkMrOUUi9QdKPgLiSZxKbMrcnMom9verGCC1c5kO__z-ED4BrBe4QInJpuZaYOQ5SnCHEKU3ICxggXOM0L-nl6nAkagYsQVhDCGMvOwSiDlGKK-BiwV1PL3umkcuvBlYn2m9DLKiStTZSzQ6N71zaySjrZ6-UmCd3SeBMuwZmNlLk6vBPw8Th_nz2ni7enl9nDItUZp33KeFlKpbBRliNqMKEQZxATTQqboYLnsJQw10pRxSzUhlNmS1wqwiLFMcom4G7f2_l2PZjQi9oFbapKNqYdgsCIcsZYTmhEb_-gq3bw8fQdxShBnJNI4T2lfRuCN1Z03tXSbwSCYmtVbK2KnVWxsyq2oZtD9aBqUx4jPxojkO2BEL-aL-N_d_9T-w09v4NS</recordid><startdate>20181206</startdate><enddate>20181206</enddate><creator>Nguyen, Khanh Thuy</creator><creator>De Michele, Cristiano</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20181206</creationdate><title>Nematic liquid crystals of bifunctional patchy spheres</title><author>Nguyen, Khanh Thuy ; De Michele, Cristiano</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-67ddabb2ebf715e245023024c49f319780da08cbb5b6f0ce756fd2db463027213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Anisotropy</topic><topic>Biological and Medical Physics</topic><topic>Biophysics</topic><topic>Chains</topic><topic>Complex Fluids and Microfluidics</topic><topic>Complex Systems</topic><topic>Computer simulation</topic><topic>Condensed matter physics</topic><topic>Cylinders</topic><topic>Liquid crystals</topic><topic>Mathematical models</topic><topic>Nanotechnology</topic><topic>Nematic crystals</topic><topic>Physical properties</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Polymer Sciences</topic><topic>Regular Article</topic><topic>Self-assembly</topic><topic>Soft and Granular Matter</topic><topic>Surfaces and Interfaces</topic><topic>Thin Films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nguyen, Khanh Thuy</creatorcontrib><creatorcontrib>De Michele, Cristiano</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The European physical journal. E, Soft matter and biological physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nguyen, Khanh Thuy</au><au>De Michele, Cristiano</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nematic liquid crystals of bifunctional patchy spheres</atitle><jtitle>The European physical journal. E, Soft matter and biological physics</jtitle><stitle>Eur. Phys. J. E</stitle><addtitle>Eur Phys J E Soft Matter</addtitle><date>2018-12-06</date><risdate>2018</risdate><volume>41</volume><issue>12</issue><spage>141</spage><epage>9</epage><pages>141-9</pages><artnum>141</artnum><issn>1292-8941</issn><eissn>1292-895X</eissn><abstract>.
Anisotropic interactions can bring about the formation, through self-assembly, of semi-flexible chains, which in turn can give rise to nematic phases for suitable temperatures and concentrations. A minimalist model constituted of hard cylinders decorated with attractive sites has been already extensively studied numerically. Simulation data shows that a theoretical approach recently proposed is able to properly capture the physical properties of these self-assembly-driven liquid crystals. Here, we investigated a simpler model constituted of bifunctional Kern-Frenkel hard spheres which does not possess steric anisotropy but which can undergo a istropic-nematic transition as a result of their self-assembly into semi-flexible chains. For this model we compare an accurate numerical estimate of isotropic-nematic phase boundaries with theoretical predictions. The theoretical treatment, originally proposed for cylinder-like particles, has been greatly simplified and its predictions are in good agreement with numerical results. Finally, we also assess a crucial, and not obvious, hypothesis used in the theory,
i.e.
the ability of the Onsager trial function to properly model particle orientation in the presence of aggregation, that has not been properly checked yet.
Graphical abstract</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>30552517</pmid><doi>10.1140/epje/i2018-11750-4</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1292-8941 |
ispartof | The European physical journal. E, Soft matter and biological physics, 2018-12, Vol.41 (12), p.141-9, Article 141 |
issn | 1292-8941 1292-895X |
language | eng |
recordid | cdi_proquest_miscellaneous_2157666845 |
source | Springer Nature - Complete Springer Journals |
subjects | Anisotropy Biological and Medical Physics Biophysics Chains Complex Fluids and Microfluidics Complex Systems Computer simulation Condensed matter physics Cylinders Liquid crystals Mathematical models Nanotechnology Nematic crystals Physical properties Physics Physics and Astronomy Polymer Sciences Regular Article Self-assembly Soft and Granular Matter Surfaces and Interfaces Thin Films |
title | Nematic liquid crystals of bifunctional patchy spheres |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T11%3A57%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nematic%20liquid%20crystals%20of%20bifunctional%20patchy%20spheres&rft.jtitle=The%20European%20physical%20journal.%20E,%20Soft%20matter%20and%20biological%20physics&rft.au=Nguyen,%20Khanh%20Thuy&rft.date=2018-12-06&rft.volume=41&rft.issue=12&rft.spage=141&rft.epage=9&rft.pages=141-9&rft.artnum=141&rft.issn=1292-8941&rft.eissn=1292-895X&rft_id=info:doi/10.1140/epje/i2018-11750-4&rft_dat=%3Cproquest_cross%3E2156541774%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2156541774&rft_id=info:pmid/30552517&rfr_iscdi=true |