Nematic liquid crystals of bifunctional patchy spheres

. Anisotropic interactions can bring about the formation, through self-assembly, of semi-flexible chains, which in turn can give rise to nematic phases for suitable temperatures and concentrations. A minimalist model constituted of hard cylinders decorated with attractive sites has been already exte...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The European physical journal. E, Soft matter and biological physics Soft matter and biological physics, 2018-12, Vol.41 (12), p.141-9, Article 141
Hauptverfasser: Nguyen, Khanh Thuy, De Michele, Cristiano
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9
container_issue 12
container_start_page 141
container_title The European physical journal. E, Soft matter and biological physics
container_volume 41
creator Nguyen, Khanh Thuy
De Michele, Cristiano
description . Anisotropic interactions can bring about the formation, through self-assembly, of semi-flexible chains, which in turn can give rise to nematic phases for suitable temperatures and concentrations. A minimalist model constituted of hard cylinders decorated with attractive sites has been already extensively studied numerically. Simulation data shows that a theoretical approach recently proposed is able to properly capture the physical properties of these self-assembly-driven liquid crystals. Here, we investigated a simpler model constituted of bifunctional Kern-Frenkel hard spheres which does not possess steric anisotropy but which can undergo a istropic-nematic transition as a result of their self-assembly into semi-flexible chains. For this model we compare an accurate numerical estimate of isotropic-nematic phase boundaries with theoretical predictions. The theoretical treatment, originally proposed for cylinder-like particles, has been greatly simplified and its predictions are in good agreement with numerical results. Finally, we also assess a crucial, and not obvious, hypothesis used in the theory, i.e. the ability of the Onsager trial function to properly model particle orientation in the presence of aggregation, that has not been properly checked yet. Graphical abstract
doi_str_mv 10.1140/epje/i2018-11750-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2157666845</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2156541774</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-67ddabb2ebf715e245023024c49f319780da08cbb5b6f0ce756fd2db463027213</originalsourceid><addsrcrecordid>eNp9kMtKAzEUhoMotlZfwIUMuHEzNsnkMrOUUi9QdKPgLiSZxKbMrcnMom9verGCC1c5kO__z-ED4BrBe4QInJpuZaYOQ5SnCHEKU3ICxggXOM0L-nl6nAkagYsQVhDCGMvOwSiDlGKK-BiwV1PL3umkcuvBlYn2m9DLKiStTZSzQ6N71zaySjrZ6-UmCd3SeBMuwZmNlLk6vBPw8Th_nz2ni7enl9nDItUZp33KeFlKpbBRliNqMKEQZxATTQqboYLnsJQw10pRxSzUhlNmS1wqwiLFMcom4G7f2_l2PZjQi9oFbapKNqYdgsCIcsZYTmhEb_-gq3bw8fQdxShBnJNI4T2lfRuCN1Z03tXSbwSCYmtVbK2KnVWxsyq2oZtD9aBqUx4jPxojkO2BEL-aL-N_d_9T-w09v4NS</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2156541774</pqid></control><display><type>article</type><title>Nematic liquid crystals of bifunctional patchy spheres</title><source>Springer Nature - Complete Springer Journals</source><creator>Nguyen, Khanh Thuy ; De Michele, Cristiano</creator><creatorcontrib>Nguyen, Khanh Thuy ; De Michele, Cristiano</creatorcontrib><description>. Anisotropic interactions can bring about the formation, through self-assembly, of semi-flexible chains, which in turn can give rise to nematic phases for suitable temperatures and concentrations. A minimalist model constituted of hard cylinders decorated with attractive sites has been already extensively studied numerically. Simulation data shows that a theoretical approach recently proposed is able to properly capture the physical properties of these self-assembly-driven liquid crystals. Here, we investigated a simpler model constituted of bifunctional Kern-Frenkel hard spheres which does not possess steric anisotropy but which can undergo a istropic-nematic transition as a result of their self-assembly into semi-flexible chains. For this model we compare an accurate numerical estimate of isotropic-nematic phase boundaries with theoretical predictions. The theoretical treatment, originally proposed for cylinder-like particles, has been greatly simplified and its predictions are in good agreement with numerical results. Finally, we also assess a crucial, and not obvious, hypothesis used in the theory, i.e. the ability of the Onsager trial function to properly model particle orientation in the presence of aggregation, that has not been properly checked yet. Graphical abstract</description><identifier>ISSN: 1292-8941</identifier><identifier>EISSN: 1292-895X</identifier><identifier>DOI: 10.1140/epje/i2018-11750-4</identifier><identifier>PMID: 30552517</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Anisotropy ; Biological and Medical Physics ; Biophysics ; Chains ; Complex Fluids and Microfluidics ; Complex Systems ; Computer simulation ; Condensed matter physics ; Cylinders ; Liquid crystals ; Mathematical models ; Nanotechnology ; Nematic crystals ; Physical properties ; Physics ; Physics and Astronomy ; Polymer Sciences ; Regular Article ; Self-assembly ; Soft and Granular Matter ; Surfaces and Interfaces ; Thin Films</subject><ispartof>The European physical journal. E, Soft matter and biological physics, 2018-12, Vol.41 (12), p.141-9, Article 141</ispartof><rights>EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018</rights><rights>Copyright Springer Nature B.V. 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-67ddabb2ebf715e245023024c49f319780da08cbb5b6f0ce756fd2db463027213</citedby><cites>FETCH-LOGICAL-c375t-67ddabb2ebf715e245023024c49f319780da08cbb5b6f0ce756fd2db463027213</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1140/epje/i2018-11750-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1140/epje/i2018-11750-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30552517$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nguyen, Khanh Thuy</creatorcontrib><creatorcontrib>De Michele, Cristiano</creatorcontrib><title>Nematic liquid crystals of bifunctional patchy spheres</title><title>The European physical journal. E, Soft matter and biological physics</title><addtitle>Eur. Phys. J. E</addtitle><addtitle>Eur Phys J E Soft Matter</addtitle><description>. Anisotropic interactions can bring about the formation, through self-assembly, of semi-flexible chains, which in turn can give rise to nematic phases for suitable temperatures and concentrations. A minimalist model constituted of hard cylinders decorated with attractive sites has been already extensively studied numerically. Simulation data shows that a theoretical approach recently proposed is able to properly capture the physical properties of these self-assembly-driven liquid crystals. Here, we investigated a simpler model constituted of bifunctional Kern-Frenkel hard spheres which does not possess steric anisotropy but which can undergo a istropic-nematic transition as a result of their self-assembly into semi-flexible chains. For this model we compare an accurate numerical estimate of isotropic-nematic phase boundaries with theoretical predictions. The theoretical treatment, originally proposed for cylinder-like particles, has been greatly simplified and its predictions are in good agreement with numerical results. Finally, we also assess a crucial, and not obvious, hypothesis used in the theory, i.e. the ability of the Onsager trial function to properly model particle orientation in the presence of aggregation, that has not been properly checked yet. Graphical abstract</description><subject>Anisotropy</subject><subject>Biological and Medical Physics</subject><subject>Biophysics</subject><subject>Chains</subject><subject>Complex Fluids and Microfluidics</subject><subject>Complex Systems</subject><subject>Computer simulation</subject><subject>Condensed matter physics</subject><subject>Cylinders</subject><subject>Liquid crystals</subject><subject>Mathematical models</subject><subject>Nanotechnology</subject><subject>Nematic crystals</subject><subject>Physical properties</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Polymer Sciences</subject><subject>Regular Article</subject><subject>Self-assembly</subject><subject>Soft and Granular Matter</subject><subject>Surfaces and Interfaces</subject><subject>Thin Films</subject><issn>1292-8941</issn><issn>1292-895X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKAzEUhoMotlZfwIUMuHEzNsnkMrOUUi9QdKPgLiSZxKbMrcnMom9verGCC1c5kO__z-ED4BrBe4QInJpuZaYOQ5SnCHEKU3ICxggXOM0L-nl6nAkagYsQVhDCGMvOwSiDlGKK-BiwV1PL3umkcuvBlYn2m9DLKiStTZSzQ6N71zaySjrZ6-UmCd3SeBMuwZmNlLk6vBPw8Th_nz2ni7enl9nDItUZp33KeFlKpbBRliNqMKEQZxATTQqboYLnsJQw10pRxSzUhlNmS1wqwiLFMcom4G7f2_l2PZjQi9oFbapKNqYdgsCIcsZYTmhEb_-gq3bw8fQdxShBnJNI4T2lfRuCN1Z03tXSbwSCYmtVbK2KnVWxsyq2oZtD9aBqUx4jPxojkO2BEL-aL-N_d_9T-w09v4NS</recordid><startdate>20181206</startdate><enddate>20181206</enddate><creator>Nguyen, Khanh Thuy</creator><creator>De Michele, Cristiano</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20181206</creationdate><title>Nematic liquid crystals of bifunctional patchy spheres</title><author>Nguyen, Khanh Thuy ; De Michele, Cristiano</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-67ddabb2ebf715e245023024c49f319780da08cbb5b6f0ce756fd2db463027213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Anisotropy</topic><topic>Biological and Medical Physics</topic><topic>Biophysics</topic><topic>Chains</topic><topic>Complex Fluids and Microfluidics</topic><topic>Complex Systems</topic><topic>Computer simulation</topic><topic>Condensed matter physics</topic><topic>Cylinders</topic><topic>Liquid crystals</topic><topic>Mathematical models</topic><topic>Nanotechnology</topic><topic>Nematic crystals</topic><topic>Physical properties</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Polymer Sciences</topic><topic>Regular Article</topic><topic>Self-assembly</topic><topic>Soft and Granular Matter</topic><topic>Surfaces and Interfaces</topic><topic>Thin Films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nguyen, Khanh Thuy</creatorcontrib><creatorcontrib>De Michele, Cristiano</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The European physical journal. E, Soft matter and biological physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nguyen, Khanh Thuy</au><au>De Michele, Cristiano</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nematic liquid crystals of bifunctional patchy spheres</atitle><jtitle>The European physical journal. E, Soft matter and biological physics</jtitle><stitle>Eur. Phys. J. E</stitle><addtitle>Eur Phys J E Soft Matter</addtitle><date>2018-12-06</date><risdate>2018</risdate><volume>41</volume><issue>12</issue><spage>141</spage><epage>9</epage><pages>141-9</pages><artnum>141</artnum><issn>1292-8941</issn><eissn>1292-895X</eissn><abstract>. Anisotropic interactions can bring about the formation, through self-assembly, of semi-flexible chains, which in turn can give rise to nematic phases for suitable temperatures and concentrations. A minimalist model constituted of hard cylinders decorated with attractive sites has been already extensively studied numerically. Simulation data shows that a theoretical approach recently proposed is able to properly capture the physical properties of these self-assembly-driven liquid crystals. Here, we investigated a simpler model constituted of bifunctional Kern-Frenkel hard spheres which does not possess steric anisotropy but which can undergo a istropic-nematic transition as a result of their self-assembly into semi-flexible chains. For this model we compare an accurate numerical estimate of isotropic-nematic phase boundaries with theoretical predictions. The theoretical treatment, originally proposed for cylinder-like particles, has been greatly simplified and its predictions are in good agreement with numerical results. Finally, we also assess a crucial, and not obvious, hypothesis used in the theory, i.e. the ability of the Onsager trial function to properly model particle orientation in the presence of aggregation, that has not been properly checked yet. Graphical abstract</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>30552517</pmid><doi>10.1140/epje/i2018-11750-4</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1292-8941
ispartof The European physical journal. E, Soft matter and biological physics, 2018-12, Vol.41 (12), p.141-9, Article 141
issn 1292-8941
1292-895X
language eng
recordid cdi_proquest_miscellaneous_2157666845
source Springer Nature - Complete Springer Journals
subjects Anisotropy
Biological and Medical Physics
Biophysics
Chains
Complex Fluids and Microfluidics
Complex Systems
Computer simulation
Condensed matter physics
Cylinders
Liquid crystals
Mathematical models
Nanotechnology
Nematic crystals
Physical properties
Physics
Physics and Astronomy
Polymer Sciences
Regular Article
Self-assembly
Soft and Granular Matter
Surfaces and Interfaces
Thin Films
title Nematic liquid crystals of bifunctional patchy spheres
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T11%3A57%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nematic%20liquid%20crystals%20of%20bifunctional%20patchy%20spheres&rft.jtitle=The%20European%20physical%20journal.%20E,%20Soft%20matter%20and%20biological%20physics&rft.au=Nguyen,%20Khanh%20Thuy&rft.date=2018-12-06&rft.volume=41&rft.issue=12&rft.spage=141&rft.epage=9&rft.pages=141-9&rft.artnum=141&rft.issn=1292-8941&rft.eissn=1292-895X&rft_id=info:doi/10.1140/epje/i2018-11750-4&rft_dat=%3Cproquest_cross%3E2156541774%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2156541774&rft_id=info:pmid/30552517&rfr_iscdi=true