Development of modified montmorillonite-bacterial cellulose nanocomposites as a novel substitute for burn skin and tissue regeneration
•Bacterial cellulose and modified montmorillonites nanocomposites were prepared through particle impregnation method.•Synthesis of nanocomposites was confirmed by Fe-SEM, FTIR and XRD.•Nanocomposites showed antibacterial activity against various burn wound pathogens.•Nanocomposites enhanced burn wou...
Gespeichert in:
Veröffentlicht in: | Carbohydrate polymers 2019-02, Vol.206, p.548-556 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | •Bacterial cellulose and modified montmorillonites nanocomposites were prepared through particle impregnation method.•Synthesis of nanocomposites was confirmed by Fe-SEM, FTIR and XRD.•Nanocomposites showed antibacterial activity against various burn wound pathogens.•Nanocomposites enhanced burn wound healing and tissue regeneration in animal model.
Bacterial cellulose (BC) is a promising biopolymer with wound healing and tissue regenerative properties but lack of antimicrobial property limits its biomedical applications. Therefore, current study was proposed to combine wound healing property of BC with antimicrobial activity of montmorillonite (MMT) and modified montmorillonites (Cu-MMT, Na-MMT and Ca-MMT) to design novel artificial substitute for burns. Designed nanocomposites were characterized through Fe-SEM, FTIR and XRD. The antimicrobial activities of composites were tested against Escherichia coli, Salmonella typhimurium, Citrobacter fruendii, Pseudomonas aeruginosa, Staphylococcus aureus and Methicillin-resistant Staphylococcus aureus. Tissue regeneration and wound healing activities of the composites were assessed in burn mice model. Physico-chemical characterization confirmed the loading of MMT onto surface and BC matrix. Modified MMTs-BC nanocomposites showed clear inhibitory zone against the tested pathogens. Animals treated with modified MMTs-BC nanocomposites exhibited enhanced wound healing activity with tissue regeneration, reepithelialization, healthy granulation and vascularization. These findings demonstrated that modified MMTs-BC nanocomposites could be used as a novel artificial skin substitute for burn patients and scaffold for skin tissue engineering. |
---|---|
ISSN: | 0144-8617 1879-1344 |
DOI: | 10.1016/j.carbpol.2018.11.023 |