Structure of native lens connexin 46/50 intercellular channels by cryo-EM
Gap junctions establish direct pathways for cell-to-cell communication through the assembly of twelve connexin subunits that form intercellular channels connecting neighbouring cells. Co-assembly of different connexin isoforms produces channels with unique properties and enables communication across...
Gespeichert in:
Veröffentlicht in: | Nature (London) 2018-12, Vol.564 (7736), p.372-377 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 377 |
---|---|
container_issue | 7736 |
container_start_page | 372 |
container_title | Nature (London) |
container_volume | 564 |
creator | Myers, Janette B. Haddad, Bassam G. O’Neill, Susan E. Chorev, Dror S. Yoshioka, Craig C. Robinson, Carol V. Zuckerman, Daniel M. Reichow, Steve L. |
description | Gap junctions establish direct pathways for cell-to-cell communication through the assembly of twelve connexin subunits that form intercellular channels connecting neighbouring cells. Co-assembly of different connexin isoforms produces channels with unique properties and enables communication across cell types. Here we used single-particle cryo-electron microscopy to investigate the structural basis of connexin co-assembly in native lens gap junction channels composed of connexin 46 and connexin 50 (Cx46/50). We provide the first comparative analysis to connexin 26 (Cx26), which—together with computational studies—elucidates key energetic features governing gap junction permselectivity. Cx46/50 adopts an open-state conformation that is distinct from the Cx26 crystal structure, yet it appears to be stabilized by a conserved set of hydrophobic anchoring residues. ‘Hot spots’ of genetic mutations linked to hereditary cataract formation map to the core structural–functional elements identified in Cx46/50, suggesting explanations for many of the disease-causing effects.
Cryo-electron microscopy structures of connexin channels composed of connexin 46 and connexin 50 in an open-state reveal features that govern permselectivity and the location of mutated residues linked to herediatry cataracts. |
doi_str_mv | 10.1038/s41586-018-0786-7 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2155929794</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A573351656</galeid><sourcerecordid>A573351656</sourcerecordid><originalsourceid>FETCH-LOGICAL-c581t-71c4b3f5d534095b51055c6819f2afdbdfe115b8f4fdeeaa32461883b0bdc3253</originalsourceid><addsrcrecordid>eNp10sFu1DAQBmALgei28ABckAUXOKS1Y0_iHKuqlJWKkCicLccZL6my9tZOqu7b42gLZdEiH2J5vhk51k_IG85OORPqLEkOqioYVwWr86Z-RhZc1lUhK1U_JwvGylxRojoixyndMsaA1_IlORIMZMlBLsjyZoyTHaeINDjqzdjfIx3QJ2qD9_jQeyqrM2C09yNGi8MwDSZS-9Pk6pBou6U2bkNx-eUVeeHMkPD14_eE_Ph0-f3ic3H99Wp5cX5dWFB8LGpuZSscdCAka6AFzgBspXjjSuO6tnPIObTKSdchGiNKWXGlRMvazooSxAn5sJu7ieFuwjTqdZ_mixmPYUo6_xc0ZVM3MtP3_9DbMEWfb5dVBVUJsmme1MoMqHvvwhiNnYfqc6iFgJlmVRxQK_QYzRA8uj4f7_l3B7zd9Hf6b3R6AOXV4bq3B6d-3GvIZsSHcWWmlPTy5tu-5TtrY0gpotOb2K9N3GrO9JwfvcuPzvnRc350nXvePr7Y1K6x-9PxOzAZlDuQcsmvMD496f-n_gKJMspM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2165625499</pqid></control><display><type>article</type><title>Structure of native lens connexin 46/50 intercellular channels by cryo-EM</title><source>MEDLINE</source><source>Nature</source><source>Alma/SFX Local Collection</source><creator>Myers, Janette B. ; Haddad, Bassam G. ; O’Neill, Susan E. ; Chorev, Dror S. ; Yoshioka, Craig C. ; Robinson, Carol V. ; Zuckerman, Daniel M. ; Reichow, Steve L.</creator><creatorcontrib>Myers, Janette B. ; Haddad, Bassam G. ; O’Neill, Susan E. ; Chorev, Dror S. ; Yoshioka, Craig C. ; Robinson, Carol V. ; Zuckerman, Daniel M. ; Reichow, Steve L.</creatorcontrib><description>Gap junctions establish direct pathways for cell-to-cell communication through the assembly of twelve connexin subunits that form intercellular channels connecting neighbouring cells. Co-assembly of different connexin isoforms produces channels with unique properties and enables communication across cell types. Here we used single-particle cryo-electron microscopy to investigate the structural basis of connexin co-assembly in native lens gap junction channels composed of connexin 46 and connexin 50 (Cx46/50). We provide the first comparative analysis to connexin 26 (Cx26), which—together with computational studies—elucidates key energetic features governing gap junction permselectivity. Cx46/50 adopts an open-state conformation that is distinct from the Cx26 crystal structure, yet it appears to be stabilized by a conserved set of hydrophobic anchoring residues. ‘Hot spots’ of genetic mutations linked to hereditary cataract formation map to the core structural–functional elements identified in Cx46/50, suggesting explanations for many of the disease-causing effects.
Cryo-electron microscopy structures of connexin channels composed of connexin 46 and connexin 50 in an open-state reveal features that govern permselectivity and the location of mutated residues linked to herediatry cataracts.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/s41586-018-0786-7</identifier><identifier>PMID: 30542154</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>101/28 ; 101/58 ; 119/118 ; 631/45/269 ; 631/535/1258/1259 ; 631/57/2266 ; 631/57/2270/1140 ; 631/57/2271 ; 82/83 ; Amino Acid Sequence ; Analysis ; Anchoring ; Assembly ; Cataract - congenital ; Cataract - genetics ; Cataracts ; Cell interactions ; Cell membranes ; Cell signaling ; Channels ; Communication ; Comparative analysis ; Computer applications ; Conformation ; Connexin 26 ; Connexin 26 - chemistry ; Connexins - chemistry ; Connexins - genetics ; Connexins - ultrastructure ; Cryoelectron Microscopy ; Crystal structure ; Cytological research ; Electron microscopy ; Gap junctions ; Gap Junctions - chemistry ; Gap Junctions - genetics ; Gap Junctions - ultrastructure ; Gene mutation ; Humanities and Social Sciences ; Humans ; Hydrophobicity ; Isoforms ; Lens, Crystalline - chemistry ; Lens, Crystalline - cytology ; Lens, Crystalline - ultrastructure ; Mass spectrometry ; Microscopy ; Models, Molecular ; multidisciplinary ; Mutation ; Neurophysiology ; Physiological aspects ; Science ; Science (multidisciplinary) ; Scientific imaging ; Structure-function relationships</subject><ispartof>Nature (London), 2018-12, Vol.564 (7736), p.372-377</ispartof><rights>Springer Nature Limited 2018</rights><rights>COPYRIGHT 2018 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Dec 20-Dec 27, 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c581t-71c4b3f5d534095b51055c6819f2afdbdfe115b8f4fdeeaa32461883b0bdc3253</citedby><cites>FETCH-LOGICAL-c581t-71c4b3f5d534095b51055c6819f2afdbdfe115b8f4fdeeaa32461883b0bdc3253</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30542154$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Myers, Janette B.</creatorcontrib><creatorcontrib>Haddad, Bassam G.</creatorcontrib><creatorcontrib>O’Neill, Susan E.</creatorcontrib><creatorcontrib>Chorev, Dror S.</creatorcontrib><creatorcontrib>Yoshioka, Craig C.</creatorcontrib><creatorcontrib>Robinson, Carol V.</creatorcontrib><creatorcontrib>Zuckerman, Daniel M.</creatorcontrib><creatorcontrib>Reichow, Steve L.</creatorcontrib><title>Structure of native lens connexin 46/50 intercellular channels by cryo-EM</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>Gap junctions establish direct pathways for cell-to-cell communication through the assembly of twelve connexin subunits that form intercellular channels connecting neighbouring cells. Co-assembly of different connexin isoforms produces channels with unique properties and enables communication across cell types. Here we used single-particle cryo-electron microscopy to investigate the structural basis of connexin co-assembly in native lens gap junction channels composed of connexin 46 and connexin 50 (Cx46/50). We provide the first comparative analysis to connexin 26 (Cx26), which—together with computational studies—elucidates key energetic features governing gap junction permselectivity. Cx46/50 adopts an open-state conformation that is distinct from the Cx26 crystal structure, yet it appears to be stabilized by a conserved set of hydrophobic anchoring residues. ‘Hot spots’ of genetic mutations linked to hereditary cataract formation map to the core structural–functional elements identified in Cx46/50, suggesting explanations for many of the disease-causing effects.
Cryo-electron microscopy structures of connexin channels composed of connexin 46 and connexin 50 in an open-state reveal features that govern permselectivity and the location of mutated residues linked to herediatry cataracts.</description><subject>101/28</subject><subject>101/58</subject><subject>119/118</subject><subject>631/45/269</subject><subject>631/535/1258/1259</subject><subject>631/57/2266</subject><subject>631/57/2270/1140</subject><subject>631/57/2271</subject><subject>82/83</subject><subject>Amino Acid Sequence</subject><subject>Analysis</subject><subject>Anchoring</subject><subject>Assembly</subject><subject>Cataract - congenital</subject><subject>Cataract - genetics</subject><subject>Cataracts</subject><subject>Cell interactions</subject><subject>Cell membranes</subject><subject>Cell signaling</subject><subject>Channels</subject><subject>Communication</subject><subject>Comparative analysis</subject><subject>Computer applications</subject><subject>Conformation</subject><subject>Connexin 26</subject><subject>Connexin 26 - chemistry</subject><subject>Connexins - chemistry</subject><subject>Connexins - genetics</subject><subject>Connexins - ultrastructure</subject><subject>Cryoelectron Microscopy</subject><subject>Crystal structure</subject><subject>Cytological research</subject><subject>Electron microscopy</subject><subject>Gap junctions</subject><subject>Gap Junctions - chemistry</subject><subject>Gap Junctions - genetics</subject><subject>Gap Junctions - ultrastructure</subject><subject>Gene mutation</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Hydrophobicity</subject><subject>Isoforms</subject><subject>Lens, Crystalline - chemistry</subject><subject>Lens, Crystalline - cytology</subject><subject>Lens, Crystalline - ultrastructure</subject><subject>Mass spectrometry</subject><subject>Microscopy</subject><subject>Models, Molecular</subject><subject>multidisciplinary</subject><subject>Mutation</subject><subject>Neurophysiology</subject><subject>Physiological aspects</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Scientific imaging</subject><subject>Structure-function relationships</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp10sFu1DAQBmALgei28ABckAUXOKS1Y0_iHKuqlJWKkCicLccZL6my9tZOqu7b42gLZdEiH2J5vhk51k_IG85OORPqLEkOqioYVwWr86Z-RhZc1lUhK1U_JwvGylxRojoixyndMsaA1_IlORIMZMlBLsjyZoyTHaeINDjqzdjfIx3QJ2qD9_jQeyqrM2C09yNGi8MwDSZS-9Pk6pBou6U2bkNx-eUVeeHMkPD14_eE_Ph0-f3ic3H99Wp5cX5dWFB8LGpuZSscdCAka6AFzgBspXjjSuO6tnPIObTKSdchGiNKWXGlRMvazooSxAn5sJu7ieFuwjTqdZ_mixmPYUo6_xc0ZVM3MtP3_9DbMEWfb5dVBVUJsmme1MoMqHvvwhiNnYfqc6iFgJlmVRxQK_QYzRA8uj4f7_l3B7zd9Hf6b3R6AOXV4bq3B6d-3GvIZsSHcWWmlPTy5tu-5TtrY0gpotOb2K9N3GrO9JwfvcuPzvnRc350nXvePr7Y1K6x-9PxOzAZlDuQcsmvMD496f-n_gKJMspM</recordid><startdate>201812</startdate><enddate>201812</enddate><creator>Myers, Janette B.</creator><creator>Haddad, Bassam G.</creator><creator>O’Neill, Susan E.</creator><creator>Chorev, Dror S.</creator><creator>Yoshioka, Craig C.</creator><creator>Robinson, Carol V.</creator><creator>Zuckerman, Daniel M.</creator><creator>Reichow, Steve L.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope><scope>7X8</scope></search><sort><creationdate>201812</creationdate><title>Structure of native lens connexin 46/50 intercellular channels by cryo-EM</title><author>Myers, Janette B. ; Haddad, Bassam G. ; O’Neill, Susan E. ; Chorev, Dror S. ; Yoshioka, Craig C. ; Robinson, Carol V. ; Zuckerman, Daniel M. ; Reichow, Steve L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c581t-71c4b3f5d534095b51055c6819f2afdbdfe115b8f4fdeeaa32461883b0bdc3253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>101/28</topic><topic>101/58</topic><topic>119/118</topic><topic>631/45/269</topic><topic>631/535/1258/1259</topic><topic>631/57/2266</topic><topic>631/57/2270/1140</topic><topic>631/57/2271</topic><topic>82/83</topic><topic>Amino Acid Sequence</topic><topic>Analysis</topic><topic>Anchoring</topic><topic>Assembly</topic><topic>Cataract - congenital</topic><topic>Cataract - genetics</topic><topic>Cataracts</topic><topic>Cell interactions</topic><topic>Cell membranes</topic><topic>Cell signaling</topic><topic>Channels</topic><topic>Communication</topic><topic>Comparative analysis</topic><topic>Computer applications</topic><topic>Conformation</topic><topic>Connexin 26</topic><topic>Connexin 26 - chemistry</topic><topic>Connexins - chemistry</topic><topic>Connexins - genetics</topic><topic>Connexins - ultrastructure</topic><topic>Cryoelectron Microscopy</topic><topic>Crystal structure</topic><topic>Cytological research</topic><topic>Electron microscopy</topic><topic>Gap junctions</topic><topic>Gap Junctions - chemistry</topic><topic>Gap Junctions - genetics</topic><topic>Gap Junctions - ultrastructure</topic><topic>Gene mutation</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Hydrophobicity</topic><topic>Isoforms</topic><topic>Lens, Crystalline - chemistry</topic><topic>Lens, Crystalline - cytology</topic><topic>Lens, Crystalline - ultrastructure</topic><topic>Mass spectrometry</topic><topic>Microscopy</topic><topic>Models, Molecular</topic><topic>multidisciplinary</topic><topic>Mutation</topic><topic>Neurophysiology</topic><topic>Physiological aspects</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Scientific imaging</topic><topic>Structure-function relationships</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Myers, Janette B.</creatorcontrib><creatorcontrib>Haddad, Bassam G.</creatorcontrib><creatorcontrib>O’Neill, Susan E.</creatorcontrib><creatorcontrib>Chorev, Dror S.</creatorcontrib><creatorcontrib>Yoshioka, Craig C.</creatorcontrib><creatorcontrib>Robinson, Carol V.</creatorcontrib><creatorcontrib>Zuckerman, Daniel M.</creatorcontrib><creatorcontrib>Reichow, Steve L.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Myers, Janette B.</au><au>Haddad, Bassam G.</au><au>O’Neill, Susan E.</au><au>Chorev, Dror S.</au><au>Yoshioka, Craig C.</au><au>Robinson, Carol V.</au><au>Zuckerman, Daniel M.</au><au>Reichow, Steve L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structure of native lens connexin 46/50 intercellular channels by cryo-EM</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2018-12</date><risdate>2018</risdate><volume>564</volume><issue>7736</issue><spage>372</spage><epage>377</epage><pages>372-377</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><abstract>Gap junctions establish direct pathways for cell-to-cell communication through the assembly of twelve connexin subunits that form intercellular channels connecting neighbouring cells. Co-assembly of different connexin isoforms produces channels with unique properties and enables communication across cell types. Here we used single-particle cryo-electron microscopy to investigate the structural basis of connexin co-assembly in native lens gap junction channels composed of connexin 46 and connexin 50 (Cx46/50). We provide the first comparative analysis to connexin 26 (Cx26), which—together with computational studies—elucidates key energetic features governing gap junction permselectivity. Cx46/50 adopts an open-state conformation that is distinct from the Cx26 crystal structure, yet it appears to be stabilized by a conserved set of hydrophobic anchoring residues. ‘Hot spots’ of genetic mutations linked to hereditary cataract formation map to the core structural–functional elements identified in Cx46/50, suggesting explanations for many of the disease-causing effects.
Cryo-electron microscopy structures of connexin channels composed of connexin 46 and connexin 50 in an open-state reveal features that govern permselectivity and the location of mutated residues linked to herediatry cataracts.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>30542154</pmid><doi>10.1038/s41586-018-0786-7</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0028-0836 |
ispartof | Nature (London), 2018-12, Vol.564 (7736), p.372-377 |
issn | 0028-0836 1476-4687 |
language | eng |
recordid | cdi_proquest_miscellaneous_2155929794 |
source | MEDLINE; Nature; Alma/SFX Local Collection |
subjects | 101/28 101/58 119/118 631/45/269 631/535/1258/1259 631/57/2266 631/57/2270/1140 631/57/2271 82/83 Amino Acid Sequence Analysis Anchoring Assembly Cataract - congenital Cataract - genetics Cataracts Cell interactions Cell membranes Cell signaling Channels Communication Comparative analysis Computer applications Conformation Connexin 26 Connexin 26 - chemistry Connexins - chemistry Connexins - genetics Connexins - ultrastructure Cryoelectron Microscopy Crystal structure Cytological research Electron microscopy Gap junctions Gap Junctions - chemistry Gap Junctions - genetics Gap Junctions - ultrastructure Gene mutation Humanities and Social Sciences Humans Hydrophobicity Isoforms Lens, Crystalline - chemistry Lens, Crystalline - cytology Lens, Crystalline - ultrastructure Mass spectrometry Microscopy Models, Molecular multidisciplinary Mutation Neurophysiology Physiological aspects Science Science (multidisciplinary) Scientific imaging Structure-function relationships |
title | Structure of native lens connexin 46/50 intercellular channels by cryo-EM |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T05%3A08%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structure%20of%20native%20lens%20connexin%2046/50%20intercellular%20channels%20by%20cryo-EM&rft.jtitle=Nature%20(London)&rft.au=Myers,%20Janette%20B.&rft.date=2018-12&rft.volume=564&rft.issue=7736&rft.spage=372&rft.epage=377&rft.pages=372-377&rft.issn=0028-0836&rft.eissn=1476-4687&rft_id=info:doi/10.1038/s41586-018-0786-7&rft_dat=%3Cgale_proqu%3EA573351656%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2165625499&rft_id=info:pmid/30542154&rft_galeid=A573351656&rfr_iscdi=true |