Multimorbidity and Hospital Admissions in High-Need, High-Cost Elderly Patients

Objective: The aim was to clarify which pairs or clusters of diseases predict the hospital-related events and death in a population of patients with complex health care needs (PCHCN). Method: Subjects classified in 2012 as PCHCN in a local health unit by ACG® (Adjusted Clinical Groups) System were l...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of aging and health 2020-06, Vol.32 (5-6), p.259-268
Hauptverfasser: Buja, Alessandra, Rivera, Michele, De Battisti, Elisa, Corti, Maria Chiara, Avossa, Francesco, Schievano, Elena, Rigon, Stefano, Baldo, Vincenzo, Boccuzzo, Giovanna, Ebell, Mark H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 268
container_issue 5-6
container_start_page 259
container_title Journal of aging and health
container_volume 32
creator Buja, Alessandra
Rivera, Michele
De Battisti, Elisa
Corti, Maria Chiara
Avossa, Francesco
Schievano, Elena
Rigon, Stefano
Baldo, Vincenzo
Boccuzzo, Giovanna
Ebell, Mark H.
description Objective: The aim was to clarify which pairs or clusters of diseases predict the hospital-related events and death in a population of patients with complex health care needs (PCHCN). Method: Subjects classified in 2012 as PCHCN in a local health unit by ACG® (Adjusted Clinical Groups) System were linked with hospital discharge records in 2013 to identify those who experienced any of a series of hospital admission events and death. Number of comorbidities, comorbidities dyads, and latent classes were used as exposure variable. Regression analyses were applied to examine the associations between dependent and exposure variables. Results: Besides the fact that larger number of chronic conditions is associated with higher odds of hospital admission or death, we showed that certain dyads and classes of diseases have a particularly strong association with these outcomes. Discussion: Unlike morbidity counts, analyzing morbidity clusters and dyads reveals which combinations of morbidities are associated with the highest hospitalization rates or death.
doi_str_mv 10.1177/0898264318817091
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2155895892</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_0898264318817091</sage_id><sourcerecordid>2401697506</sourcerecordid><originalsourceid>FETCH-LOGICAL-c407t-b833ff0e62298751a026da22476cd19e924839f8ba32cd9b4b188dfadf005e73</originalsourceid><addsrcrecordid>eNp1kNFLwzAQxoMobk7ffZKCLz5YvSRtkzzKmE6Yzoe9l7RJZ0bbzKR92H9vRqfCQDi4g_vdd3cfQtcYHjBm7BG44CRLKOYcMxD4BI1xmpI445ydovG-He_7I3Th_QYACAZ8jkYUUkIo52O0fOvrzjTWFUaZbhfJVkVz67emk3X0pBrjvbGtj0wbzc36M37XWt0P5dT6LprVSrt6F33Izui285forJK111eHPEGr59lqOo8Xy5fX6dMiLhNgXVxwSqsKdEaI4CzFEkimJCEJy0qFhRYk4VRUvJCUlEoUSRFeVJVUFUCqGZ2gu0F26-xXr32Xh0tLXdey1bb3OQk2cBGCBPT2CN3Y3rXhuJwkgDPBUsgCBQNVOuu901W-daaRbpdjyPde58deh5Gbg3BfNFr9DvyYG4B4ALxc67-t_wp-A4TihHc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2401697506</pqid></control><display><type>article</type><title>Multimorbidity and Hospital Admissions in High-Need, High-Cost Elderly Patients</title><source>SAGE Complete A-Z List</source><source>MEDLINE</source><creator>Buja, Alessandra ; Rivera, Michele ; De Battisti, Elisa ; Corti, Maria Chiara ; Avossa, Francesco ; Schievano, Elena ; Rigon, Stefano ; Baldo, Vincenzo ; Boccuzzo, Giovanna ; Ebell, Mark H.</creator><creatorcontrib>Buja, Alessandra ; Rivera, Michele ; De Battisti, Elisa ; Corti, Maria Chiara ; Avossa, Francesco ; Schievano, Elena ; Rigon, Stefano ; Baldo, Vincenzo ; Boccuzzo, Giovanna ; Ebell, Mark H.</creatorcontrib><description>Objective: The aim was to clarify which pairs or clusters of diseases predict the hospital-related events and death in a population of patients with complex health care needs (PCHCN). Method: Subjects classified in 2012 as PCHCN in a local health unit by ACG® (Adjusted Clinical Groups) System were linked with hospital discharge records in 2013 to identify those who experienced any of a series of hospital admission events and death. Number of comorbidities, comorbidities dyads, and latent classes were used as exposure variable. Regression analyses were applied to examine the associations between dependent and exposure variables. Results: Besides the fact that larger number of chronic conditions is associated with higher odds of hospital admission or death, we showed that certain dyads and classes of diseases have a particularly strong association with these outcomes. Discussion: Unlike morbidity counts, analyzing morbidity clusters and dyads reveals which combinations of morbidities are associated with the highest hospitalization rates or death.</description><identifier>ISSN: 0898-2643</identifier><identifier>EISSN: 1552-6887</identifier><identifier>DOI: 10.1177/0898264318817091</identifier><identifier>PMID: 30522388</identifier><language>eng</language><publisher>Los Angeles, CA: SAGE Publications</publisher><subject>Aged ; Aged, 80 and over ; Chronic Disease - classification ; Chronic Disease - epidemiology ; Chronic Disease - mortality ; Comorbidity ; Female ; Frail Elderly - statistics &amp; numerical data ; Health technology assessment ; Hospitalization - statistics &amp; numerical data ; Humans ; Italy - epidemiology ; Latent Class Analysis ; Male ; Multimorbidity ; National Health Programs ; Older people ; Regression Analysis</subject><ispartof>Journal of aging and health, 2020-06, Vol.32 (5-6), p.259-268</ispartof><rights>The Author(s) 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c407t-b833ff0e62298751a026da22476cd19e924839f8ba32cd9b4b188dfadf005e73</citedby><cites>FETCH-LOGICAL-c407t-b833ff0e62298751a026da22476cd19e924839f8ba32cd9b4b188dfadf005e73</cites><orcidid>0000-0003-2143-7730 ; 0000-0001-6217-9948</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/0898264318817091$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/0898264318817091$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,776,780,21800,27903,27904,43600,43601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30522388$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Buja, Alessandra</creatorcontrib><creatorcontrib>Rivera, Michele</creatorcontrib><creatorcontrib>De Battisti, Elisa</creatorcontrib><creatorcontrib>Corti, Maria Chiara</creatorcontrib><creatorcontrib>Avossa, Francesco</creatorcontrib><creatorcontrib>Schievano, Elena</creatorcontrib><creatorcontrib>Rigon, Stefano</creatorcontrib><creatorcontrib>Baldo, Vincenzo</creatorcontrib><creatorcontrib>Boccuzzo, Giovanna</creatorcontrib><creatorcontrib>Ebell, Mark H.</creatorcontrib><title>Multimorbidity and Hospital Admissions in High-Need, High-Cost Elderly Patients</title><title>Journal of aging and health</title><addtitle>J Aging Health</addtitle><description>Objective: The aim was to clarify which pairs or clusters of diseases predict the hospital-related events and death in a population of patients with complex health care needs (PCHCN). Method: Subjects classified in 2012 as PCHCN in a local health unit by ACG® (Adjusted Clinical Groups) System were linked with hospital discharge records in 2013 to identify those who experienced any of a series of hospital admission events and death. Number of comorbidities, comorbidities dyads, and latent classes were used as exposure variable. Regression analyses were applied to examine the associations between dependent and exposure variables. Results: Besides the fact that larger number of chronic conditions is associated with higher odds of hospital admission or death, we showed that certain dyads and classes of diseases have a particularly strong association with these outcomes. Discussion: Unlike morbidity counts, analyzing morbidity clusters and dyads reveals which combinations of morbidities are associated with the highest hospitalization rates or death.</description><subject>Aged</subject><subject>Aged, 80 and over</subject><subject>Chronic Disease - classification</subject><subject>Chronic Disease - epidemiology</subject><subject>Chronic Disease - mortality</subject><subject>Comorbidity</subject><subject>Female</subject><subject>Frail Elderly - statistics &amp; numerical data</subject><subject>Health technology assessment</subject><subject>Hospitalization - statistics &amp; numerical data</subject><subject>Humans</subject><subject>Italy - epidemiology</subject><subject>Latent Class Analysis</subject><subject>Male</subject><subject>Multimorbidity</subject><subject>National Health Programs</subject><subject>Older people</subject><subject>Regression Analysis</subject><issn>0898-2643</issn><issn>1552-6887</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kNFLwzAQxoMobk7ffZKCLz5YvSRtkzzKmE6Yzoe9l7RJZ0bbzKR92H9vRqfCQDi4g_vdd3cfQtcYHjBm7BG44CRLKOYcMxD4BI1xmpI445ydovG-He_7I3Th_QYACAZ8jkYUUkIo52O0fOvrzjTWFUaZbhfJVkVz67emk3X0pBrjvbGtj0wbzc36M37XWt0P5dT6LprVSrt6F33Izui285forJK111eHPEGr59lqOo8Xy5fX6dMiLhNgXVxwSqsKdEaI4CzFEkimJCEJy0qFhRYk4VRUvJCUlEoUSRFeVJVUFUCqGZ2gu0F26-xXr32Xh0tLXdey1bb3OQk2cBGCBPT2CN3Y3rXhuJwkgDPBUsgCBQNVOuu901W-daaRbpdjyPde58deh5Gbg3BfNFr9DvyYG4B4ALxc67-t_wp-A4TihHc</recordid><startdate>202006</startdate><enddate>202006</enddate><creator>Buja, Alessandra</creator><creator>Rivera, Michele</creator><creator>De Battisti, Elisa</creator><creator>Corti, Maria Chiara</creator><creator>Avossa, Francesco</creator><creator>Schievano, Elena</creator><creator>Rigon, Stefano</creator><creator>Baldo, Vincenzo</creator><creator>Boccuzzo, Giovanna</creator><creator>Ebell, Mark H.</creator><general>SAGE Publications</general><general>SAGE PUBLICATIONS, INC</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2143-7730</orcidid><orcidid>https://orcid.org/0000-0001-6217-9948</orcidid></search><sort><creationdate>202006</creationdate><title>Multimorbidity and Hospital Admissions in High-Need, High-Cost Elderly Patients</title><author>Buja, Alessandra ; Rivera, Michele ; De Battisti, Elisa ; Corti, Maria Chiara ; Avossa, Francesco ; Schievano, Elena ; Rigon, Stefano ; Baldo, Vincenzo ; Boccuzzo, Giovanna ; Ebell, Mark H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c407t-b833ff0e62298751a026da22476cd19e924839f8ba32cd9b4b188dfadf005e73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aged</topic><topic>Aged, 80 and over</topic><topic>Chronic Disease - classification</topic><topic>Chronic Disease - epidemiology</topic><topic>Chronic Disease - mortality</topic><topic>Comorbidity</topic><topic>Female</topic><topic>Frail Elderly - statistics &amp; numerical data</topic><topic>Health technology assessment</topic><topic>Hospitalization - statistics &amp; numerical data</topic><topic>Humans</topic><topic>Italy - epidemiology</topic><topic>Latent Class Analysis</topic><topic>Male</topic><topic>Multimorbidity</topic><topic>National Health Programs</topic><topic>Older people</topic><topic>Regression Analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Buja, Alessandra</creatorcontrib><creatorcontrib>Rivera, Michele</creatorcontrib><creatorcontrib>De Battisti, Elisa</creatorcontrib><creatorcontrib>Corti, Maria Chiara</creatorcontrib><creatorcontrib>Avossa, Francesco</creatorcontrib><creatorcontrib>Schievano, Elena</creatorcontrib><creatorcontrib>Rigon, Stefano</creatorcontrib><creatorcontrib>Baldo, Vincenzo</creatorcontrib><creatorcontrib>Boccuzzo, Giovanna</creatorcontrib><creatorcontrib>Ebell, Mark H.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of aging and health</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Buja, Alessandra</au><au>Rivera, Michele</au><au>De Battisti, Elisa</au><au>Corti, Maria Chiara</au><au>Avossa, Francesco</au><au>Schievano, Elena</au><au>Rigon, Stefano</au><au>Baldo, Vincenzo</au><au>Boccuzzo, Giovanna</au><au>Ebell, Mark H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multimorbidity and Hospital Admissions in High-Need, High-Cost Elderly Patients</atitle><jtitle>Journal of aging and health</jtitle><addtitle>J Aging Health</addtitle><date>2020-06</date><risdate>2020</risdate><volume>32</volume><issue>5-6</issue><spage>259</spage><epage>268</epage><pages>259-268</pages><issn>0898-2643</issn><eissn>1552-6887</eissn><abstract>Objective: The aim was to clarify which pairs or clusters of diseases predict the hospital-related events and death in a population of patients with complex health care needs (PCHCN). Method: Subjects classified in 2012 as PCHCN in a local health unit by ACG® (Adjusted Clinical Groups) System were linked with hospital discharge records in 2013 to identify those who experienced any of a series of hospital admission events and death. Number of comorbidities, comorbidities dyads, and latent classes were used as exposure variable. Regression analyses were applied to examine the associations between dependent and exposure variables. Results: Besides the fact that larger number of chronic conditions is associated with higher odds of hospital admission or death, we showed that certain dyads and classes of diseases have a particularly strong association with these outcomes. Discussion: Unlike morbidity counts, analyzing morbidity clusters and dyads reveals which combinations of morbidities are associated with the highest hospitalization rates or death.</abstract><cop>Los Angeles, CA</cop><pub>SAGE Publications</pub><pmid>30522388</pmid><doi>10.1177/0898264318817091</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-2143-7730</orcidid><orcidid>https://orcid.org/0000-0001-6217-9948</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0898-2643
ispartof Journal of aging and health, 2020-06, Vol.32 (5-6), p.259-268
issn 0898-2643
1552-6887
language eng
recordid cdi_proquest_miscellaneous_2155895892
source SAGE Complete A-Z List; MEDLINE
subjects Aged
Aged, 80 and over
Chronic Disease - classification
Chronic Disease - epidemiology
Chronic Disease - mortality
Comorbidity
Female
Frail Elderly - statistics & numerical data
Health technology assessment
Hospitalization - statistics & numerical data
Humans
Italy - epidemiology
Latent Class Analysis
Male
Multimorbidity
National Health Programs
Older people
Regression Analysis
title Multimorbidity and Hospital Admissions in High-Need, High-Cost Elderly Patients
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T17%3A59%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multimorbidity%20and%20Hospital%20Admissions%20in%20High-Need,%20High-Cost%20Elderly%20Patients&rft.jtitle=Journal%20of%20aging%20and%20health&rft.au=Buja,%20Alessandra&rft.date=2020-06&rft.volume=32&rft.issue=5-6&rft.spage=259&rft.epage=268&rft.pages=259-268&rft.issn=0898-2643&rft.eissn=1552-6887&rft_id=info:doi/10.1177/0898264318817091&rft_dat=%3Cproquest_cross%3E2401697506%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2401697506&rft_id=info:pmid/30522388&rft_sage_id=10.1177_0898264318817091&rfr_iscdi=true