Biomolecule-corona formation confers resistance of bacteria to nanoparticle-induced killing: Implications for the design of improved nanoantibiotics

Multidrug-resistant bacterial infections are a global health threat. Nanoparticles are thus investigated as novel antibacterial agents for clinical practice, including wound dressings and implants. We report that nanoparticles' bactericidal activity strongly depends on their physical binding to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomaterials 2019-02, Vol.192, p.551-559
Hauptverfasser: Siemer, Svenja, Westmeier, Dana, Barz, Matthias, Eckrich, Jonas, Wünsch, Désirée, Seckert, Christof, Thyssen, Christian, Schilling, Oliver, Hasenberg, Mike, Pang, Chengfang, Docter, Dominic, Knauer, Shirley K., Stauber, Roland H., Strieth, Sebastian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 559
container_issue
container_start_page 551
container_title Biomaterials
container_volume 192
creator Siemer, Svenja
Westmeier, Dana
Barz, Matthias
Eckrich, Jonas
Wünsch, Désirée
Seckert, Christof
Thyssen, Christian
Schilling, Oliver
Hasenberg, Mike
Pang, Chengfang
Docter, Dominic
Knauer, Shirley K.
Stauber, Roland H.
Strieth, Sebastian
description Multidrug-resistant bacterial infections are a global health threat. Nanoparticles are thus investigated as novel antibacterial agents for clinical practice, including wound dressings and implants. We report that nanoparticles' bactericidal activity strongly depends on their physical binding to pathogens, including multidrug-resistant primary clinical isolates, such as Staphylococcus aureus, Klebsiella pneumoniae or Enterococcus faecalis. Using controllable nanoparticle models, we found that nanoparticle-pathogen complex formation was enhanced by small nanoparticle size rather than material or charge, and was prevented by 'stealth' modifications. Nanoparticles seem to preferentially bind to Gram-positive pathogens, such as Listeria monocytogenes, S. aureus or Streptococcus pyrogenes, correlating with enhanced antibacterial activity. Bacterial resistance to metal-based nanoparticles was mediated by biomolecule coronas acquired in pathophysiological environments, such as wounds, the lung, or the blood system. Biomolecule corona formation reduced nanoparticles' binding to pathogens, but did not impact nanoparticle dissolution. Our results provide a mechanistic explanation why nano-sized antibiotics may show reduced activity in clinically relevant environments, and may inspire future nanoantibiotic designs with improved and potentially pathogen-specific activity.
doi_str_mv 10.1016/j.biomaterials.2018.11.028
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2155167521</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0142961218308111</els_id><sourcerecordid>2155167521</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-828d259fe9b024f046ad25218964e15c14df7c8612e430a441025799aba3af473</originalsourceid><addsrcrecordid>eNqNkc1u1TAQhS0EopfCKyCLFZsE23ESpzsof5UqdVPWluOMiy-JfbGdSrxHH5hJb0FddmWNdM43PnMIecdZzRnvPuzr0cfFFEjezLkWjKua85oJ9YzsuOpV1Q6sfU52jEtRDR0XJ-RVznuGM5PiJTlpWNswIeWO3H1CVJzBrjNUNqYYDHUxId3HQG0MDlKmCbLPxQQLNDo6Gnu_m5ZIgwnxYFLxFv0-TKuFif7y8-zDzRm9WA6zt_esvGFp-Ql0QthN2EB-OaR4i4aNYkLxmAtJ-TV54TAZvHl4T8mPr1-uz79Xl1ffLs4_Xla2UaxUSqhJtIODYcQwjsnO4Cy4GjoJvLVcTq63CvODbJiRkjPR9sNgRtMYJ_vmlLw_cvEbv1fIRS8-W5hnEyCuWQvetrzrEYnSs6PUpphzAqcPyS8m_dGc6a0VvdePW9FbK5pzja2g-e3DnnVcYPpv_VcDCj4fBYBpbz0kna0HPPfkE9iip-ifsucv7j-odg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2155167521</pqid></control><display><type>article</type><title>Biomolecule-corona formation confers resistance of bacteria to nanoparticle-induced killing: Implications for the design of improved nanoantibiotics</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Siemer, Svenja ; Westmeier, Dana ; Barz, Matthias ; Eckrich, Jonas ; Wünsch, Désirée ; Seckert, Christof ; Thyssen, Christian ; Schilling, Oliver ; Hasenberg, Mike ; Pang, Chengfang ; Docter, Dominic ; Knauer, Shirley K. ; Stauber, Roland H. ; Strieth, Sebastian</creator><creatorcontrib>Siemer, Svenja ; Westmeier, Dana ; Barz, Matthias ; Eckrich, Jonas ; Wünsch, Désirée ; Seckert, Christof ; Thyssen, Christian ; Schilling, Oliver ; Hasenberg, Mike ; Pang, Chengfang ; Docter, Dominic ; Knauer, Shirley K. ; Stauber, Roland H. ; Strieth, Sebastian</creatorcontrib><description>Multidrug-resistant bacterial infections are a global health threat. Nanoparticles are thus investigated as novel antibacterial agents for clinical practice, including wound dressings and implants. We report that nanoparticles' bactericidal activity strongly depends on their physical binding to pathogens, including multidrug-resistant primary clinical isolates, such as Staphylococcus aureus, Klebsiella pneumoniae or Enterococcus faecalis. Using controllable nanoparticle models, we found that nanoparticle-pathogen complex formation was enhanced by small nanoparticle size rather than material or charge, and was prevented by 'stealth' modifications. Nanoparticles seem to preferentially bind to Gram-positive pathogens, such as Listeria monocytogenes, S. aureus or Streptococcus pyrogenes, correlating with enhanced antibacterial activity. Bacterial resistance to metal-based nanoparticles was mediated by biomolecule coronas acquired in pathophysiological environments, such as wounds, the lung, or the blood system. Biomolecule corona formation reduced nanoparticles' binding to pathogens, but did not impact nanoparticle dissolution. Our results provide a mechanistic explanation why nano-sized antibiotics may show reduced activity in clinically relevant environments, and may inspire future nanoantibiotic designs with improved and potentially pathogen-specific activity.</description><identifier>ISSN: 0142-9612</identifier><identifier>EISSN: 1878-5905</identifier><identifier>DOI: 10.1016/j.biomaterials.2018.11.028</identifier><identifier>PMID: 30530244</identifier><language>eng</language><publisher>Netherlands: Elsevier Ltd</publisher><subject>Adsorption ; Anti-Bacterial Agents - pharmacology ; Antibiotic nanomaterials ; Bacteria ; Biocorona ; Drug Resistance, Multiple, Bacterial - drug effects ; Escherichia coli - drug effects ; Escherichia coli - ultrastructure ; Implants ; Microbial Sensitivity Tests ; Microbial Viability - drug effects ; MRSA ; Multidrug-resistant pathogens ; Nanomedicine ; Nanoparticles ; Nanoparticles - chemistry ; Nanoparticles - ultrastructure ; Resistance</subject><ispartof>Biomaterials, 2019-02, Vol.192, p.551-559</ispartof><rights>2018 Elsevier Ltd</rights><rights>Copyright © 2018 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c380t-828d259fe9b024f046ad25218964e15c14df7c8612e430a441025799aba3af473</citedby><cites>FETCH-LOGICAL-c380t-828d259fe9b024f046ad25218964e15c14df7c8612e430a441025799aba3af473</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.biomaterials.2018.11.028$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27929,27930,46000</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30530244$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Siemer, Svenja</creatorcontrib><creatorcontrib>Westmeier, Dana</creatorcontrib><creatorcontrib>Barz, Matthias</creatorcontrib><creatorcontrib>Eckrich, Jonas</creatorcontrib><creatorcontrib>Wünsch, Désirée</creatorcontrib><creatorcontrib>Seckert, Christof</creatorcontrib><creatorcontrib>Thyssen, Christian</creatorcontrib><creatorcontrib>Schilling, Oliver</creatorcontrib><creatorcontrib>Hasenberg, Mike</creatorcontrib><creatorcontrib>Pang, Chengfang</creatorcontrib><creatorcontrib>Docter, Dominic</creatorcontrib><creatorcontrib>Knauer, Shirley K.</creatorcontrib><creatorcontrib>Stauber, Roland H.</creatorcontrib><creatorcontrib>Strieth, Sebastian</creatorcontrib><title>Biomolecule-corona formation confers resistance of bacteria to nanoparticle-induced killing: Implications for the design of improved nanoantibiotics</title><title>Biomaterials</title><addtitle>Biomaterials</addtitle><description>Multidrug-resistant bacterial infections are a global health threat. Nanoparticles are thus investigated as novel antibacterial agents for clinical practice, including wound dressings and implants. We report that nanoparticles' bactericidal activity strongly depends on their physical binding to pathogens, including multidrug-resistant primary clinical isolates, such as Staphylococcus aureus, Klebsiella pneumoniae or Enterococcus faecalis. Using controllable nanoparticle models, we found that nanoparticle-pathogen complex formation was enhanced by small nanoparticle size rather than material or charge, and was prevented by 'stealth' modifications. Nanoparticles seem to preferentially bind to Gram-positive pathogens, such as Listeria monocytogenes, S. aureus or Streptococcus pyrogenes, correlating with enhanced antibacterial activity. Bacterial resistance to metal-based nanoparticles was mediated by biomolecule coronas acquired in pathophysiological environments, such as wounds, the lung, or the blood system. Biomolecule corona formation reduced nanoparticles' binding to pathogens, but did not impact nanoparticle dissolution. Our results provide a mechanistic explanation why nano-sized antibiotics may show reduced activity in clinically relevant environments, and may inspire future nanoantibiotic designs with improved and potentially pathogen-specific activity.</description><subject>Adsorption</subject><subject>Anti-Bacterial Agents - pharmacology</subject><subject>Antibiotic nanomaterials</subject><subject>Bacteria</subject><subject>Biocorona</subject><subject>Drug Resistance, Multiple, Bacterial - drug effects</subject><subject>Escherichia coli - drug effects</subject><subject>Escherichia coli - ultrastructure</subject><subject>Implants</subject><subject>Microbial Sensitivity Tests</subject><subject>Microbial Viability - drug effects</subject><subject>MRSA</subject><subject>Multidrug-resistant pathogens</subject><subject>Nanomedicine</subject><subject>Nanoparticles</subject><subject>Nanoparticles - chemistry</subject><subject>Nanoparticles - ultrastructure</subject><subject>Resistance</subject><issn>0142-9612</issn><issn>1878-5905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkc1u1TAQhS0EopfCKyCLFZsE23ESpzsof5UqdVPWluOMiy-JfbGdSrxHH5hJb0FddmWNdM43PnMIecdZzRnvPuzr0cfFFEjezLkWjKua85oJ9YzsuOpV1Q6sfU52jEtRDR0XJ-RVznuGM5PiJTlpWNswIeWO3H1CVJzBrjNUNqYYDHUxId3HQG0MDlKmCbLPxQQLNDo6Gnu_m5ZIgwnxYFLxFv0-TKuFif7y8-zDzRm9WA6zt_esvGFp-Ql0QthN2EB-OaR4i4aNYkLxmAtJ-TV54TAZvHl4T8mPr1-uz79Xl1ffLs4_Xla2UaxUSqhJtIODYcQwjsnO4Cy4GjoJvLVcTq63CvODbJiRkjPR9sNgRtMYJ_vmlLw_cvEbv1fIRS8-W5hnEyCuWQvetrzrEYnSs6PUpphzAqcPyS8m_dGc6a0VvdePW9FbK5pzja2g-e3DnnVcYPpv_VcDCj4fBYBpbz0kna0HPPfkE9iip-ifsucv7j-odg</recordid><startdate>201902</startdate><enddate>201902</enddate><creator>Siemer, Svenja</creator><creator>Westmeier, Dana</creator><creator>Barz, Matthias</creator><creator>Eckrich, Jonas</creator><creator>Wünsch, Désirée</creator><creator>Seckert, Christof</creator><creator>Thyssen, Christian</creator><creator>Schilling, Oliver</creator><creator>Hasenberg, Mike</creator><creator>Pang, Chengfang</creator><creator>Docter, Dominic</creator><creator>Knauer, Shirley K.</creator><creator>Stauber, Roland H.</creator><creator>Strieth, Sebastian</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201902</creationdate><title>Biomolecule-corona formation confers resistance of bacteria to nanoparticle-induced killing: Implications for the design of improved nanoantibiotics</title><author>Siemer, Svenja ; Westmeier, Dana ; Barz, Matthias ; Eckrich, Jonas ; Wünsch, Désirée ; Seckert, Christof ; Thyssen, Christian ; Schilling, Oliver ; Hasenberg, Mike ; Pang, Chengfang ; Docter, Dominic ; Knauer, Shirley K. ; Stauber, Roland H. ; Strieth, Sebastian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-828d259fe9b024f046ad25218964e15c14df7c8612e430a441025799aba3af473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Adsorption</topic><topic>Anti-Bacterial Agents - pharmacology</topic><topic>Antibiotic nanomaterials</topic><topic>Bacteria</topic><topic>Biocorona</topic><topic>Drug Resistance, Multiple, Bacterial - drug effects</topic><topic>Escherichia coli - drug effects</topic><topic>Escherichia coli - ultrastructure</topic><topic>Implants</topic><topic>Microbial Sensitivity Tests</topic><topic>Microbial Viability - drug effects</topic><topic>MRSA</topic><topic>Multidrug-resistant pathogens</topic><topic>Nanomedicine</topic><topic>Nanoparticles</topic><topic>Nanoparticles - chemistry</topic><topic>Nanoparticles - ultrastructure</topic><topic>Resistance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Siemer, Svenja</creatorcontrib><creatorcontrib>Westmeier, Dana</creatorcontrib><creatorcontrib>Barz, Matthias</creatorcontrib><creatorcontrib>Eckrich, Jonas</creatorcontrib><creatorcontrib>Wünsch, Désirée</creatorcontrib><creatorcontrib>Seckert, Christof</creatorcontrib><creatorcontrib>Thyssen, Christian</creatorcontrib><creatorcontrib>Schilling, Oliver</creatorcontrib><creatorcontrib>Hasenberg, Mike</creatorcontrib><creatorcontrib>Pang, Chengfang</creatorcontrib><creatorcontrib>Docter, Dominic</creatorcontrib><creatorcontrib>Knauer, Shirley K.</creatorcontrib><creatorcontrib>Stauber, Roland H.</creatorcontrib><creatorcontrib>Strieth, Sebastian</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Biomaterials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Siemer, Svenja</au><au>Westmeier, Dana</au><au>Barz, Matthias</au><au>Eckrich, Jonas</au><au>Wünsch, Désirée</au><au>Seckert, Christof</au><au>Thyssen, Christian</au><au>Schilling, Oliver</au><au>Hasenberg, Mike</au><au>Pang, Chengfang</au><au>Docter, Dominic</au><au>Knauer, Shirley K.</au><au>Stauber, Roland H.</au><au>Strieth, Sebastian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Biomolecule-corona formation confers resistance of bacteria to nanoparticle-induced killing: Implications for the design of improved nanoantibiotics</atitle><jtitle>Biomaterials</jtitle><addtitle>Biomaterials</addtitle><date>2019-02</date><risdate>2019</risdate><volume>192</volume><spage>551</spage><epage>559</epage><pages>551-559</pages><issn>0142-9612</issn><eissn>1878-5905</eissn><abstract>Multidrug-resistant bacterial infections are a global health threat. Nanoparticles are thus investigated as novel antibacterial agents for clinical practice, including wound dressings and implants. We report that nanoparticles' bactericidal activity strongly depends on their physical binding to pathogens, including multidrug-resistant primary clinical isolates, such as Staphylococcus aureus, Klebsiella pneumoniae or Enterococcus faecalis. Using controllable nanoparticle models, we found that nanoparticle-pathogen complex formation was enhanced by small nanoparticle size rather than material or charge, and was prevented by 'stealth' modifications. Nanoparticles seem to preferentially bind to Gram-positive pathogens, such as Listeria monocytogenes, S. aureus or Streptococcus pyrogenes, correlating with enhanced antibacterial activity. Bacterial resistance to metal-based nanoparticles was mediated by biomolecule coronas acquired in pathophysiological environments, such as wounds, the lung, or the blood system. Biomolecule corona formation reduced nanoparticles' binding to pathogens, but did not impact nanoparticle dissolution. Our results provide a mechanistic explanation why nano-sized antibiotics may show reduced activity in clinically relevant environments, and may inspire future nanoantibiotic designs with improved and potentially pathogen-specific activity.</abstract><cop>Netherlands</cop><pub>Elsevier Ltd</pub><pmid>30530244</pmid><doi>10.1016/j.biomaterials.2018.11.028</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0142-9612
ispartof Biomaterials, 2019-02, Vol.192, p.551-559
issn 0142-9612
1878-5905
language eng
recordid cdi_proquest_miscellaneous_2155167521
source MEDLINE; Access via ScienceDirect (Elsevier)
subjects Adsorption
Anti-Bacterial Agents - pharmacology
Antibiotic nanomaterials
Bacteria
Biocorona
Drug Resistance, Multiple, Bacterial - drug effects
Escherichia coli - drug effects
Escherichia coli - ultrastructure
Implants
Microbial Sensitivity Tests
Microbial Viability - drug effects
MRSA
Multidrug-resistant pathogens
Nanomedicine
Nanoparticles
Nanoparticles - chemistry
Nanoparticles - ultrastructure
Resistance
title Biomolecule-corona formation confers resistance of bacteria to nanoparticle-induced killing: Implications for the design of improved nanoantibiotics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T21%3A39%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Biomolecule-corona%20formation%20confers%20resistance%20of%20bacteria%20to%20nanoparticle-induced%20killing:%20Implications%20for%20the%20design%20of%20improved%20nanoantibiotics&rft.jtitle=Biomaterials&rft.au=Siemer,%20Svenja&rft.date=2019-02&rft.volume=192&rft.spage=551&rft.epage=559&rft.pages=551-559&rft.issn=0142-9612&rft.eissn=1878-5905&rft_id=info:doi/10.1016/j.biomaterials.2018.11.028&rft_dat=%3Cproquest_cross%3E2155167521%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2155167521&rft_id=info:pmid/30530244&rft_els_id=S0142961218308111&rfr_iscdi=true