Dimensionality reduction for visualizing single-cell data using UMAP
A benchmarking analysis on single-cell RNA-seq and mass cytometry data reveals the best-performing technique for dimensionality reduction. Advances in single-cell technologies have enabled high-resolution dissection of tissue composition. Several tools for dimensionality reduction are available to a...
Gespeichert in:
Veröffentlicht in: | Nature biotechnology 2019-01, Vol.37 (1), p.38-44 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 44 |
---|---|
container_issue | 1 |
container_start_page | 38 |
container_title | Nature biotechnology |
container_volume | 37 |
creator | Becht, Etienne McInnes, Leland Healy, John Dutertre, Charles-Antoine Kwok, Immanuel W H Ng, Lai Guan Ginhoux, Florent Newell, Evan W |
description | A benchmarking analysis on single-cell RNA-seq and mass cytometry data reveals the best-performing technique for dimensionality reduction.
Advances in single-cell technologies have enabled high-resolution dissection of tissue composition. Several tools for dimensionality reduction are available to analyze the large number of parameters generated in single-cell studies. Recently, a nonlinear dimensionality-reduction technique, uniform manifold approximation and projection (UMAP), was developed for the analysis of any type of high-dimensional data. Here we apply it to biological data, using three well-characterized mass cytometry and single-cell RNA sequencing datasets. Comparing the performance of UMAP with five other tools, we find that UMAP provides the fastest run times, highest reproducibility and the most meaningful organization of cell clusters. The work highlights the use of UMAP for improved visualization and interpretation of single-cell data. |
doi_str_mv | 10.1038/nbt.4314 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2155160253</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A572559607</galeid><sourcerecordid>A572559607</sourcerecordid><originalsourceid>FETCH-LOGICAL-c579t-4af6b88dd6ce3cd7efba359829e55470eb09134dcd005659fe6f00c6655aea783</originalsourceid><addsrcrecordid>eNqNkl1rFTEQhoNYbK2Cv0AWvFHoHpPN5mMvD63WQqWi1tuQTSZryn7UJCvWX2-WHns8KiKBSTJ5ZjKZvAg9IXhFMJUvxzatakrqe-iAsJqXhDf8fl5jKUpMGN9HD2O8whjzmvMHaJ9iRolsxAE6OfEDjNFPo-59uikC2NmkvC3cFIqvPs7Z_92PXRGz6aE00PeF1UkX8-IpLt-u3z1Ce073ER5v5kN0-frVx-M35fnF6dnx-rw0TDSprLXjrZTWcgPUWAGu1ZQ1smqAsVpgaHFDaG2NxZhx1jjgDmPDOWMatJD0ED2_zXsdpi8zxKQGH5eC9AjTHFVFGCMcV4xm9Nlv6NU0h_zITNGKECmZrP9JEV5JIgSRW6rTPSg_uikFbZar1ZqJirGGY5Gp1V-oPCwM3kwjOJ_9OwEvdgIyk-Bb6vQcozr78P7_2YtPu-zRL2y7fBPEbKLvPqd4G7KDb5pqwhRjAKeugx90uFEEq0VdKqtLLerK6NNNu-Z2AHsH_pTTtsyYj8YOwraffyT7AVZn0sM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2162817718</pqid></control><display><type>article</type><title>Dimensionality reduction for visualizing single-cell data using UMAP</title><source>Nature Journals Online</source><source>SpringerLink Journals - AutoHoldings</source><creator>Becht, Etienne ; McInnes, Leland ; Healy, John ; Dutertre, Charles-Antoine ; Kwok, Immanuel W H ; Ng, Lai Guan ; Ginhoux, Florent ; Newell, Evan W</creator><creatorcontrib>Becht, Etienne ; McInnes, Leland ; Healy, John ; Dutertre, Charles-Antoine ; Kwok, Immanuel W H ; Ng, Lai Guan ; Ginhoux, Florent ; Newell, Evan W</creatorcontrib><description>A benchmarking analysis on single-cell RNA-seq and mass cytometry data reveals the best-performing technique for dimensionality reduction.
Advances in single-cell technologies have enabled high-resolution dissection of tissue composition. Several tools for dimensionality reduction are available to analyze the large number of parameters generated in single-cell studies. Recently, a nonlinear dimensionality-reduction technique, uniform manifold approximation and projection (UMAP), was developed for the analysis of any type of high-dimensional data. Here we apply it to biological data, using three well-characterized mass cytometry and single-cell RNA sequencing datasets. Comparing the performance of UMAP with five other tools, we find that UMAP provides the fastest run times, highest reproducibility and the most meaningful organization of cell clusters. The work highlights the use of UMAP for improved visualization and interpretation of single-cell data.</description><identifier>ISSN: 1087-0156</identifier><identifier>EISSN: 1546-1696</identifier><identifier>DOI: 10.1038/nbt.4314</identifier><identifier>PMID: 30531897</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>631/114 ; 631/114/2164 ; 631/250 ; Agriculture ; analysis ; Approximation ; B cells ; Bioinformatics ; Biomedical Engineering/Biotechnology ; Biomedicine ; Biotechnology ; Bone marrow ; Cells (Biology) ; Cytometry ; Datasets ; Dendritic cells ; Flow cytometry ; Gene sequencing ; Life Sciences ; Lymphocytes ; Medical research ; Principal components analysis ; Reduction ; Reproducibility ; Ribonucleic acid ; RNA ; RNA sequencing ; Surgery ; Transcription (Genetics) ; Visualization (Computer)</subject><ispartof>Nature biotechnology, 2019-01, Vol.37 (1), p.38-44</ispartof><rights>Springer Nature America, Inc. 2018</rights><rights>COPYRIGHT 2019 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Jan 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c579t-4af6b88dd6ce3cd7efba359829e55470eb09134dcd005659fe6f00c6655aea783</citedby><cites>FETCH-LOGICAL-c579t-4af6b88dd6ce3cd7efba359829e55470eb09134dcd005659fe6f00c6655aea783</cites><orcidid>0000-0002-2857-7755 ; 0000-0003-2143-6834 ; 0000-0002-2889-243X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nbt.4314$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nbt.4314$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30531897$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Becht, Etienne</creatorcontrib><creatorcontrib>McInnes, Leland</creatorcontrib><creatorcontrib>Healy, John</creatorcontrib><creatorcontrib>Dutertre, Charles-Antoine</creatorcontrib><creatorcontrib>Kwok, Immanuel W H</creatorcontrib><creatorcontrib>Ng, Lai Guan</creatorcontrib><creatorcontrib>Ginhoux, Florent</creatorcontrib><creatorcontrib>Newell, Evan W</creatorcontrib><title>Dimensionality reduction for visualizing single-cell data using UMAP</title><title>Nature biotechnology</title><addtitle>Nat Biotechnol</addtitle><addtitle>Nat Biotechnol</addtitle><description>A benchmarking analysis on single-cell RNA-seq and mass cytometry data reveals the best-performing technique for dimensionality reduction.
Advances in single-cell technologies have enabled high-resolution dissection of tissue composition. Several tools for dimensionality reduction are available to analyze the large number of parameters generated in single-cell studies. Recently, a nonlinear dimensionality-reduction technique, uniform manifold approximation and projection (UMAP), was developed for the analysis of any type of high-dimensional data. Here we apply it to biological data, using three well-characterized mass cytometry and single-cell RNA sequencing datasets. Comparing the performance of UMAP with five other tools, we find that UMAP provides the fastest run times, highest reproducibility and the most meaningful organization of cell clusters. The work highlights the use of UMAP for improved visualization and interpretation of single-cell data.</description><subject>631/114</subject><subject>631/114/2164</subject><subject>631/250</subject><subject>Agriculture</subject><subject>analysis</subject><subject>Approximation</subject><subject>B cells</subject><subject>Bioinformatics</subject><subject>Biomedical Engineering/Biotechnology</subject><subject>Biomedicine</subject><subject>Biotechnology</subject><subject>Bone marrow</subject><subject>Cells (Biology)</subject><subject>Cytometry</subject><subject>Datasets</subject><subject>Dendritic cells</subject><subject>Flow cytometry</subject><subject>Gene sequencing</subject><subject>Life Sciences</subject><subject>Lymphocytes</subject><subject>Medical research</subject><subject>Principal components analysis</subject><subject>Reduction</subject><subject>Reproducibility</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>RNA sequencing</subject><subject>Surgery</subject><subject>Transcription (Genetics)</subject><subject>Visualization (Computer)</subject><issn>1087-0156</issn><issn>1546-1696</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>N95</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqNkl1rFTEQhoNYbK2Cv0AWvFHoHpPN5mMvD63WQqWi1tuQTSZryn7UJCvWX2-WHns8KiKBSTJ5ZjKZvAg9IXhFMJUvxzatakrqe-iAsJqXhDf8fl5jKUpMGN9HD2O8whjzmvMHaJ9iRolsxAE6OfEDjNFPo-59uikC2NmkvC3cFIqvPs7Z_92PXRGz6aE00PeF1UkX8-IpLt-u3z1Ce073ER5v5kN0-frVx-M35fnF6dnx-rw0TDSprLXjrZTWcgPUWAGu1ZQ1smqAsVpgaHFDaG2NxZhx1jjgDmPDOWMatJD0ED2_zXsdpi8zxKQGH5eC9AjTHFVFGCMcV4xm9Nlv6NU0h_zITNGKECmZrP9JEV5JIgSRW6rTPSg_uikFbZar1ZqJirGGY5Gp1V-oPCwM3kwjOJ_9OwEvdgIyk-Bb6vQcozr78P7_2YtPu-zRL2y7fBPEbKLvPqd4G7KDb5pqwhRjAKeugx90uFEEq0VdKqtLLerK6NNNu-Z2AHsH_pTTtsyYj8YOwraffyT7AVZn0sM</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>Becht, Etienne</creator><creator>McInnes, Leland</creator><creator>Healy, John</creator><creator>Dutertre, Charles-Antoine</creator><creator>Kwok, Immanuel W H</creator><creator>Ng, Lai Guan</creator><creator>Ginhoux, Florent</creator><creator>Newell, Evan W</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>N95</scope><scope>XI7</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7QR</scope><scope>7T7</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2857-7755</orcidid><orcidid>https://orcid.org/0000-0003-2143-6834</orcidid><orcidid>https://orcid.org/0000-0002-2889-243X</orcidid></search><sort><creationdate>20190101</creationdate><title>Dimensionality reduction for visualizing single-cell data using UMAP</title><author>Becht, Etienne ; McInnes, Leland ; Healy, John ; Dutertre, Charles-Antoine ; Kwok, Immanuel W H ; Ng, Lai Guan ; Ginhoux, Florent ; Newell, Evan W</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c579t-4af6b88dd6ce3cd7efba359829e55470eb09134dcd005659fe6f00c6655aea783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>631/114</topic><topic>631/114/2164</topic><topic>631/250</topic><topic>Agriculture</topic><topic>analysis</topic><topic>Approximation</topic><topic>B cells</topic><topic>Bioinformatics</topic><topic>Biomedical Engineering/Biotechnology</topic><topic>Biomedicine</topic><topic>Biotechnology</topic><topic>Bone marrow</topic><topic>Cells (Biology)</topic><topic>Cytometry</topic><topic>Datasets</topic><topic>Dendritic cells</topic><topic>Flow cytometry</topic><topic>Gene sequencing</topic><topic>Life Sciences</topic><topic>Lymphocytes</topic><topic>Medical research</topic><topic>Principal components analysis</topic><topic>Reduction</topic><topic>Reproducibility</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>RNA sequencing</topic><topic>Surgery</topic><topic>Transcription (Genetics)</topic><topic>Visualization (Computer)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Becht, Etienne</creatorcontrib><creatorcontrib>McInnes, Leland</creatorcontrib><creatorcontrib>Healy, John</creatorcontrib><creatorcontrib>Dutertre, Charles-Antoine</creatorcontrib><creatorcontrib>Kwok, Immanuel W H</creatorcontrib><creatorcontrib>Ng, Lai Guan</creatorcontrib><creatorcontrib>Ginhoux, Florent</creatorcontrib><creatorcontrib>Newell, Evan W</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale Business: Insights</collection><collection>Business Insights: Essentials</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Becht, Etienne</au><au>McInnes, Leland</au><au>Healy, John</au><au>Dutertre, Charles-Antoine</au><au>Kwok, Immanuel W H</au><au>Ng, Lai Guan</au><au>Ginhoux, Florent</au><au>Newell, Evan W</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dimensionality reduction for visualizing single-cell data using UMAP</atitle><jtitle>Nature biotechnology</jtitle><stitle>Nat Biotechnol</stitle><addtitle>Nat Biotechnol</addtitle><date>2019-01-01</date><risdate>2019</risdate><volume>37</volume><issue>1</issue><spage>38</spage><epage>44</epage><pages>38-44</pages><issn>1087-0156</issn><eissn>1546-1696</eissn><abstract>A benchmarking analysis on single-cell RNA-seq and mass cytometry data reveals the best-performing technique for dimensionality reduction.
Advances in single-cell technologies have enabled high-resolution dissection of tissue composition. Several tools for dimensionality reduction are available to analyze the large number of parameters generated in single-cell studies. Recently, a nonlinear dimensionality-reduction technique, uniform manifold approximation and projection (UMAP), was developed for the analysis of any type of high-dimensional data. Here we apply it to biological data, using three well-characterized mass cytometry and single-cell RNA sequencing datasets. Comparing the performance of UMAP with five other tools, we find that UMAP provides the fastest run times, highest reproducibility and the most meaningful organization of cell clusters. The work highlights the use of UMAP for improved visualization and interpretation of single-cell data.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>30531897</pmid><doi>10.1038/nbt.4314</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-2857-7755</orcidid><orcidid>https://orcid.org/0000-0003-2143-6834</orcidid><orcidid>https://orcid.org/0000-0002-2889-243X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1087-0156 |
ispartof | Nature biotechnology, 2019-01, Vol.37 (1), p.38-44 |
issn | 1087-0156 1546-1696 |
language | eng |
recordid | cdi_proquest_miscellaneous_2155160253 |
source | Nature Journals Online; SpringerLink Journals - AutoHoldings |
subjects | 631/114 631/114/2164 631/250 Agriculture analysis Approximation B cells Bioinformatics Biomedical Engineering/Biotechnology Biomedicine Biotechnology Bone marrow Cells (Biology) Cytometry Datasets Dendritic cells Flow cytometry Gene sequencing Life Sciences Lymphocytes Medical research Principal components analysis Reduction Reproducibility Ribonucleic acid RNA RNA sequencing Surgery Transcription (Genetics) Visualization (Computer) |
title | Dimensionality reduction for visualizing single-cell data using UMAP |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T22%3A12%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dimensionality%20reduction%20for%20visualizing%20single-cell%20data%20using%20UMAP&rft.jtitle=Nature%20biotechnology&rft.au=Becht,%20Etienne&rft.date=2019-01-01&rft.volume=37&rft.issue=1&rft.spage=38&rft.epage=44&rft.pages=38-44&rft.issn=1087-0156&rft.eissn=1546-1696&rft_id=info:doi/10.1038/nbt.4314&rft_dat=%3Cgale_proqu%3EA572559607%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2162817718&rft_id=info:pmid/30531897&rft_galeid=A572559607&rfr_iscdi=true |