Rigorous Free Energy Perturbation Approach to Estimating Relative Binding Affinities between Ligands with Multiple Protonation and Tautomeric States

Accurate prediction of ligand binding affinities is of key importance in small molecule lead optimization and a central task in computational medicinal chemistry. Over the years, advances in both computer hardware and computational methodologies have established free energy perturbation (FEP) method...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of chemical theory and computation 2019-01, Vol.15 (1), p.424-435
Hauptverfasser: de Oliveira, César, Yu, Haoyu S, Chen, Wei, Abel, Robert, Wang, Lingle
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 435
container_issue 1
container_start_page 424
container_title Journal of chemical theory and computation
container_volume 15
creator de Oliveira, César
Yu, Haoyu S
Chen, Wei
Abel, Robert
Wang, Lingle
description Accurate prediction of ligand binding affinities is of key importance in small molecule lead optimization and a central task in computational medicinal chemistry. Over the years, advances in both computer hardware and computational methodologies have established free energy perturbation (FEP) methods as among the most reliable and rigorous approaches to compute protein–ligand binding free energies. However, accurate description of ionization and tautomerism of ligands is still a major challenge in structure-based prediction of binding affinities. Druglike molecules are often weak acid or bases with multiple accessible protonation and tautomeric states that can contribute significantly to the binding process. To address this issue, we introduce in this work the pK a and tautomeric state correction approach. This approach is based on free energy perturbation formalism and provides a rigorous treatment of the ionization and tautomeric equilibria of ligands in solution and in the protein complexes. A series of Kinesin Spindle Protein (KSP) and Factor Xa inhibitor molecules were used as test cases. Our results demonstrate that the pK a and tautomeric state correction approach is able to rigorously and accurately incorporate multiple protonation and tautomeric states in the binding affinity calculations.
doi_str_mv 10.1021/acs.jctc.8b00826
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2155157447</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2155157447</sourcerecordid><originalsourceid>FETCH-LOGICAL-a364t-6508c2a06da13d444f81cd7653677e9a60b1a40fd16ade37b056d46098d39aae3</originalsourceid><addsrcrecordid>eNp1kU9PGzEQxa0KBDTl3lNlqRcOTWqv_-zuMaBAkYKIKD2vvPZscLSxU9sL4nvwgXGawKESJ4_Gv_fGnofQV0omlBT0p9JxstJJT6qWkKqQn9AJFbwe17KQB-81rY7R5xhXhDDGC3aEjhkRrKwKdoJe7uzSBz9EfBkA8MxBWD7jBYQ0hFYl6x2ebjbBK_2Ak8ezmOw6t90S30Gfi0fA59aZbWPaddbZZCHiFtITgMNzu1TORPxk0wO-GfpkNz3gRfDJu515vsb3akh-DcFq_DupBPELOuxUH-F0f47Qn8vZ_cWv8fz26vpiOh8rJnkaS0EqXSgijaLMcM67impTSsFkWUKtJGmp4qQzVCoDrGyJkIZLUleG1UoBG6GznW_-4N8BYmrWNmroe-Ugr6QpqBBUlJyXGf3-H7ryQ3D5dZmSsq7riotMkR2lg48xQNdsQt5XeG4oabaJNTmxZptYs08sS77tjYd2DeZd8BZRBn7sgH_St6Ef-r0Cx0OkWg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2166999845</pqid></control><display><type>article</type><title>Rigorous Free Energy Perturbation Approach to Estimating Relative Binding Affinities between Ligands with Multiple Protonation and Tautomeric States</title><source>ACS Publications</source><creator>de Oliveira, César ; Yu, Haoyu S ; Chen, Wei ; Abel, Robert ; Wang, Lingle</creator><creatorcontrib>de Oliveira, César ; Yu, Haoyu S ; Chen, Wei ; Abel, Robert ; Wang, Lingle</creatorcontrib><description>Accurate prediction of ligand binding affinities is of key importance in small molecule lead optimization and a central task in computational medicinal chemistry. Over the years, advances in both computer hardware and computational methodologies have established free energy perturbation (FEP) methods as among the most reliable and rigorous approaches to compute protein–ligand binding free energies. However, accurate description of ionization and tautomerism of ligands is still a major challenge in structure-based prediction of binding affinities. Druglike molecules are often weak acid or bases with multiple accessible protonation and tautomeric states that can contribute significantly to the binding process. To address this issue, we introduce in this work the pK a and tautomeric state correction approach. This approach is based on free energy perturbation formalism and provides a rigorous treatment of the ionization and tautomeric equilibria of ligands in solution and in the protein complexes. A series of Kinesin Spindle Protein (KSP) and Factor Xa inhibitor molecules were used as test cases. Our results demonstrate that the pK a and tautomeric state correction approach is able to rigorously and accurately incorporate multiple protonation and tautomeric states in the binding affinity calculations.</description><identifier>ISSN: 1549-9618</identifier><identifier>EISSN: 1549-9626</identifier><identifier>DOI: 10.1021/acs.jctc.8b00826</identifier><identifier>PMID: 30537823</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Affinity ; Binding ; Computation ; Free energy ; Ionization ; Ligands ; Organic chemistry ; Perturbation methods ; Proteins ; Protonation</subject><ispartof>Journal of chemical theory and computation, 2019-01, Vol.15 (1), p.424-435</ispartof><rights>Copyright American Chemical Society Jan 8, 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a364t-6508c2a06da13d444f81cd7653677e9a60b1a40fd16ade37b056d46098d39aae3</citedby><cites>FETCH-LOGICAL-a364t-6508c2a06da13d444f81cd7653677e9a60b1a40fd16ade37b056d46098d39aae3</cites><orcidid>0000-0002-8170-6798</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jctc.8b00826$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jctc.8b00826$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30537823$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>de Oliveira, César</creatorcontrib><creatorcontrib>Yu, Haoyu S</creatorcontrib><creatorcontrib>Chen, Wei</creatorcontrib><creatorcontrib>Abel, Robert</creatorcontrib><creatorcontrib>Wang, Lingle</creatorcontrib><title>Rigorous Free Energy Perturbation Approach to Estimating Relative Binding Affinities between Ligands with Multiple Protonation and Tautomeric States</title><title>Journal of chemical theory and computation</title><addtitle>J. Chem. Theory Comput</addtitle><description>Accurate prediction of ligand binding affinities is of key importance in small molecule lead optimization and a central task in computational medicinal chemistry. Over the years, advances in both computer hardware and computational methodologies have established free energy perturbation (FEP) methods as among the most reliable and rigorous approaches to compute protein–ligand binding free energies. However, accurate description of ionization and tautomerism of ligands is still a major challenge in structure-based prediction of binding affinities. Druglike molecules are often weak acid or bases with multiple accessible protonation and tautomeric states that can contribute significantly to the binding process. To address this issue, we introduce in this work the pK a and tautomeric state correction approach. This approach is based on free energy perturbation formalism and provides a rigorous treatment of the ionization and tautomeric equilibria of ligands in solution and in the protein complexes. A series of Kinesin Spindle Protein (KSP) and Factor Xa inhibitor molecules were used as test cases. Our results demonstrate that the pK a and tautomeric state correction approach is able to rigorously and accurately incorporate multiple protonation and tautomeric states in the binding affinity calculations.</description><subject>Affinity</subject><subject>Binding</subject><subject>Computation</subject><subject>Free energy</subject><subject>Ionization</subject><subject>Ligands</subject><subject>Organic chemistry</subject><subject>Perturbation methods</subject><subject>Proteins</subject><subject>Protonation</subject><issn>1549-9618</issn><issn>1549-9626</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kU9PGzEQxa0KBDTl3lNlqRcOTWqv_-zuMaBAkYKIKD2vvPZscLSxU9sL4nvwgXGawKESJ4_Gv_fGnofQV0omlBT0p9JxstJJT6qWkKqQn9AJFbwe17KQB-81rY7R5xhXhDDGC3aEjhkRrKwKdoJe7uzSBz9EfBkA8MxBWD7jBYQ0hFYl6x2ebjbBK_2Ak8ezmOw6t90S30Gfi0fA59aZbWPaddbZZCHiFtITgMNzu1TORPxk0wO-GfpkNz3gRfDJu515vsb3akh-DcFq_DupBPELOuxUH-F0f47Qn8vZ_cWv8fz26vpiOh8rJnkaS0EqXSgijaLMcM67impTSsFkWUKtJGmp4qQzVCoDrGyJkIZLUleG1UoBG6GznW_-4N8BYmrWNmroe-Ugr6QpqBBUlJyXGf3-H7ryQ3D5dZmSsq7riotMkR2lg48xQNdsQt5XeG4oabaJNTmxZptYs08sS77tjYd2DeZd8BZRBn7sgH_St6Ef-r0Cx0OkWg</recordid><startdate>20190108</startdate><enddate>20190108</enddate><creator>de Oliveira, César</creator><creator>Yu, Haoyu S</creator><creator>Chen, Wei</creator><creator>Abel, Robert</creator><creator>Wang, Lingle</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8170-6798</orcidid></search><sort><creationdate>20190108</creationdate><title>Rigorous Free Energy Perturbation Approach to Estimating Relative Binding Affinities between Ligands with Multiple Protonation and Tautomeric States</title><author>de Oliveira, César ; Yu, Haoyu S ; Chen, Wei ; Abel, Robert ; Wang, Lingle</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a364t-6508c2a06da13d444f81cd7653677e9a60b1a40fd16ade37b056d46098d39aae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Affinity</topic><topic>Binding</topic><topic>Computation</topic><topic>Free energy</topic><topic>Ionization</topic><topic>Ligands</topic><topic>Organic chemistry</topic><topic>Perturbation methods</topic><topic>Proteins</topic><topic>Protonation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>de Oliveira, César</creatorcontrib><creatorcontrib>Yu, Haoyu S</creatorcontrib><creatorcontrib>Chen, Wei</creatorcontrib><creatorcontrib>Abel, Robert</creatorcontrib><creatorcontrib>Wang, Lingle</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of chemical theory and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>de Oliveira, César</au><au>Yu, Haoyu S</au><au>Chen, Wei</au><au>Abel, Robert</au><au>Wang, Lingle</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rigorous Free Energy Perturbation Approach to Estimating Relative Binding Affinities between Ligands with Multiple Protonation and Tautomeric States</atitle><jtitle>Journal of chemical theory and computation</jtitle><addtitle>J. Chem. Theory Comput</addtitle><date>2019-01-08</date><risdate>2019</risdate><volume>15</volume><issue>1</issue><spage>424</spage><epage>435</epage><pages>424-435</pages><issn>1549-9618</issn><eissn>1549-9626</eissn><abstract>Accurate prediction of ligand binding affinities is of key importance in small molecule lead optimization and a central task in computational medicinal chemistry. Over the years, advances in both computer hardware and computational methodologies have established free energy perturbation (FEP) methods as among the most reliable and rigorous approaches to compute protein–ligand binding free energies. However, accurate description of ionization and tautomerism of ligands is still a major challenge in structure-based prediction of binding affinities. Druglike molecules are often weak acid or bases with multiple accessible protonation and tautomeric states that can contribute significantly to the binding process. To address this issue, we introduce in this work the pK a and tautomeric state correction approach. This approach is based on free energy perturbation formalism and provides a rigorous treatment of the ionization and tautomeric equilibria of ligands in solution and in the protein complexes. A series of Kinesin Spindle Protein (KSP) and Factor Xa inhibitor molecules were used as test cases. Our results demonstrate that the pK a and tautomeric state correction approach is able to rigorously and accurately incorporate multiple protonation and tautomeric states in the binding affinity calculations.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>30537823</pmid><doi>10.1021/acs.jctc.8b00826</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-8170-6798</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1549-9618
ispartof Journal of chemical theory and computation, 2019-01, Vol.15 (1), p.424-435
issn 1549-9618
1549-9626
language eng
recordid cdi_proquest_miscellaneous_2155157447
source ACS Publications
subjects Affinity
Binding
Computation
Free energy
Ionization
Ligands
Organic chemistry
Perturbation methods
Proteins
Protonation
title Rigorous Free Energy Perturbation Approach to Estimating Relative Binding Affinities between Ligands with Multiple Protonation and Tautomeric States
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T09%3A50%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rigorous%20Free%20Energy%20Perturbation%20Approach%20to%20Estimating%20Relative%20Binding%20Affinities%20between%20Ligands%20with%20Multiple%20Protonation%20and%20Tautomeric%20States&rft.jtitle=Journal%20of%20chemical%20theory%20and%20computation&rft.au=de%20Oliveira,%20Ce%CC%81sar&rft.date=2019-01-08&rft.volume=15&rft.issue=1&rft.spage=424&rft.epage=435&rft.pages=424-435&rft.issn=1549-9618&rft.eissn=1549-9626&rft_id=info:doi/10.1021/acs.jctc.8b00826&rft_dat=%3Cproquest_cross%3E2155157447%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2166999845&rft_id=info:pmid/30537823&rfr_iscdi=true