Optimal testing policies for diagnosing patients with intermediary probability of disease

•We introduce a shortest path algorithm to derive optimal policies for disease diagnosis.•The algorithm makes use of a Bayesian approach to derive pos-test probabilities given the result.•A dynamic programming algorithm is used to find the optimal sequence of tests up to diagnosis•The algorithm is g...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Artificial intelligence in medicine 2019-06, Vol.97, p.89-97
Hauptverfasser: Arruda, Edilson F., Pereira, Basílio B., Thiers, Clarissa A., Tura, Bernardo R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 97
container_issue
container_start_page 89
container_title Artificial intelligence in medicine
container_volume 97
creator Arruda, Edilson F.
Pereira, Basílio B.
Thiers, Clarissa A.
Tura, Bernardo R.
description •We introduce a shortest path algorithm to derive optimal policies for disease diagnosis.•The algorithm makes use of a Bayesian approach to derive pos-test probabilities given the result.•A dynamic programming algorithm is used to find the optimal sequence of tests up to diagnosis•The algorithm is guaranteed to reach a posterior probability that warrants immediate diagnosis. This paper proposes a stochastic shortest path approach to find an optimal sequence of tests to confirm or discard a disease, for any prescribed optimality criterion. The idea is to select the best sequence in which to apply a series of available tests, with a view at reaching a diagnosis with minimum expenditure of resources. The proposed approach derives an optimal policy whereby the decision maker is provided with a test strategy for each a priori probability of disease, aiming to reach posterior probabilities that warrant either immediate treatment or a not-ill diagnosis.
doi_str_mv 10.1016/j.artmed.2018.11.005
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2155150968</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0933365717301513</els_id><sourcerecordid>2155150968</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-a8532d076669d73f4e9058ef43495162bbe60c7a4326a50fbc6e6a3d992933773</originalsourceid><addsrcrecordid>eNp9kM1OwzAQhC0EoqXwBgjlyCVhHcdOfEFCFX9SpV7gwMlykk1xlSbBdkF9e1zSXjlZWs_s7HyEXFNIKFBxt0609RuskxRokVCaAPATMqVFzuK0EHBKpiAZi5ng-YRcOLcGgDyj4pxMGPC0YFxOycdy8Gaj28ij86ZbRUPfmsqgi5reRrXRq653f3PtDXbeRT_Gf0am82hDuNF2Fw22L3VpWuN3Ud8Ek0Pt8JKcNbp1eHV4Z-T96fFt_hIvls-v84dFXGVQ-FgXnKU15EIIWeesyVACL7DJWCY5FWlZooAq1xlLhebQlJVAoVktZRra5TmbkdtxbzjjaxtaqI1xFbat7rDfOpVSzikHKYogzUZpZXvnLDZqsKG83SkKag9VrdUIVe2hKkpVgBpsN4eEbbn_O5qOFIPgfhRg6Plt0CoXEHZV4GOx8qruzf8Jv4GzisM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2155150968</pqid></control><display><type>article</type><title>Optimal testing policies for diagnosing patients with intermediary probability of disease</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Arruda, Edilson F. ; Pereira, Basílio B. ; Thiers, Clarissa A. ; Tura, Bernardo R.</creator><creatorcontrib>Arruda, Edilson F. ; Pereira, Basílio B. ; Thiers, Clarissa A. ; Tura, Bernardo R.</creatorcontrib><description>•We introduce a shortest path algorithm to derive optimal policies for disease diagnosis.•The algorithm makes use of a Bayesian approach to derive pos-test probabilities given the result.•A dynamic programming algorithm is used to find the optimal sequence of tests up to diagnosis•The algorithm is guaranteed to reach a posterior probability that warrants immediate diagnosis. This paper proposes a stochastic shortest path approach to find an optimal sequence of tests to confirm or discard a disease, for any prescribed optimality criterion. The idea is to select the best sequence in which to apply a series of available tests, with a view at reaching a diagnosis with minimum expenditure of resources. The proposed approach derives an optimal policy whereby the decision maker is provided with a test strategy for each a priori probability of disease, aiming to reach posterior probabilities that warrant either immediate treatment or a not-ill diagnosis.</description><identifier>ISSN: 0933-3657</identifier><identifier>EISSN: 1873-2860</identifier><identifier>DOI: 10.1016/j.artmed.2018.11.005</identifier><identifier>PMID: 30528359</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Diagnosis ; Healthcare problems ; Stochastic shortest path</subject><ispartof>Artificial intelligence in medicine, 2019-06, Vol.97, p.89-97</ispartof><rights>2018 Elsevier B.V.</rights><rights>Copyright © 2018 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-a8532d076669d73f4e9058ef43495162bbe60c7a4326a50fbc6e6a3d992933773</citedby><cites>FETCH-LOGICAL-c408t-a8532d076669d73f4e9058ef43495162bbe60c7a4326a50fbc6e6a3d992933773</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.artmed.2018.11.005$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3541,27915,27916,45986</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30528359$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Arruda, Edilson F.</creatorcontrib><creatorcontrib>Pereira, Basílio B.</creatorcontrib><creatorcontrib>Thiers, Clarissa A.</creatorcontrib><creatorcontrib>Tura, Bernardo R.</creatorcontrib><title>Optimal testing policies for diagnosing patients with intermediary probability of disease</title><title>Artificial intelligence in medicine</title><addtitle>Artif Intell Med</addtitle><description>•We introduce a shortest path algorithm to derive optimal policies for disease diagnosis.•The algorithm makes use of a Bayesian approach to derive pos-test probabilities given the result.•A dynamic programming algorithm is used to find the optimal sequence of tests up to diagnosis•The algorithm is guaranteed to reach a posterior probability that warrants immediate diagnosis. This paper proposes a stochastic shortest path approach to find an optimal sequence of tests to confirm or discard a disease, for any prescribed optimality criterion. The idea is to select the best sequence in which to apply a series of available tests, with a view at reaching a diagnosis with minimum expenditure of resources. The proposed approach derives an optimal policy whereby the decision maker is provided with a test strategy for each a priori probability of disease, aiming to reach posterior probabilities that warrant either immediate treatment or a not-ill diagnosis.</description><subject>Diagnosis</subject><subject>Healthcare problems</subject><subject>Stochastic shortest path</subject><issn>0933-3657</issn><issn>1873-2860</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kM1OwzAQhC0EoqXwBgjlyCVhHcdOfEFCFX9SpV7gwMlykk1xlSbBdkF9e1zSXjlZWs_s7HyEXFNIKFBxt0609RuskxRokVCaAPATMqVFzuK0EHBKpiAZi5ng-YRcOLcGgDyj4pxMGPC0YFxOycdy8Gaj28ij86ZbRUPfmsqgi5reRrXRq653f3PtDXbeRT_Gf0am82hDuNF2Fw22L3VpWuN3Ud8Ek0Pt8JKcNbp1eHV4Z-T96fFt_hIvls-v84dFXGVQ-FgXnKU15EIIWeesyVACL7DJWCY5FWlZooAq1xlLhebQlJVAoVktZRra5TmbkdtxbzjjaxtaqI1xFbat7rDfOpVSzikHKYogzUZpZXvnLDZqsKG83SkKag9VrdUIVe2hKkpVgBpsN4eEbbn_O5qOFIPgfhRg6Plt0CoXEHZV4GOx8qruzf8Jv4GzisM</recordid><startdate>201906</startdate><enddate>201906</enddate><creator>Arruda, Edilson F.</creator><creator>Pereira, Basílio B.</creator><creator>Thiers, Clarissa A.</creator><creator>Tura, Bernardo R.</creator><general>Elsevier B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201906</creationdate><title>Optimal testing policies for diagnosing patients with intermediary probability of disease</title><author>Arruda, Edilson F. ; Pereira, Basílio B. ; Thiers, Clarissa A. ; Tura, Bernardo R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-a8532d076669d73f4e9058ef43495162bbe60c7a4326a50fbc6e6a3d992933773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Diagnosis</topic><topic>Healthcare problems</topic><topic>Stochastic shortest path</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Arruda, Edilson F.</creatorcontrib><creatorcontrib>Pereira, Basílio B.</creatorcontrib><creatorcontrib>Thiers, Clarissa A.</creatorcontrib><creatorcontrib>Tura, Bernardo R.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Artificial intelligence in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Arruda, Edilson F.</au><au>Pereira, Basílio B.</au><au>Thiers, Clarissa A.</au><au>Tura, Bernardo R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal testing policies for diagnosing patients with intermediary probability of disease</atitle><jtitle>Artificial intelligence in medicine</jtitle><addtitle>Artif Intell Med</addtitle><date>2019-06</date><risdate>2019</risdate><volume>97</volume><spage>89</spage><epage>97</epage><pages>89-97</pages><issn>0933-3657</issn><eissn>1873-2860</eissn><abstract>•We introduce a shortest path algorithm to derive optimal policies for disease diagnosis.•The algorithm makes use of a Bayesian approach to derive pos-test probabilities given the result.•A dynamic programming algorithm is used to find the optimal sequence of tests up to diagnosis•The algorithm is guaranteed to reach a posterior probability that warrants immediate diagnosis. This paper proposes a stochastic shortest path approach to find an optimal sequence of tests to confirm or discard a disease, for any prescribed optimality criterion. The idea is to select the best sequence in which to apply a series of available tests, with a view at reaching a diagnosis with minimum expenditure of resources. The proposed approach derives an optimal policy whereby the decision maker is provided with a test strategy for each a priori probability of disease, aiming to reach posterior probabilities that warrant either immediate treatment or a not-ill diagnosis.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>30528359</pmid><doi>10.1016/j.artmed.2018.11.005</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0933-3657
ispartof Artificial intelligence in medicine, 2019-06, Vol.97, p.89-97
issn 0933-3657
1873-2860
language eng
recordid cdi_proquest_miscellaneous_2155150968
source ScienceDirect Journals (5 years ago - present)
subjects Diagnosis
Healthcare problems
Stochastic shortest path
title Optimal testing policies for diagnosing patients with intermediary probability of disease
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T23%3A14%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20testing%20policies%20for%20diagnosing%20patients%20with%20intermediary%20probability%20of%20disease&rft.jtitle=Artificial%20intelligence%20in%20medicine&rft.au=Arruda,%20Edilson%20F.&rft.date=2019-06&rft.volume=97&rft.spage=89&rft.epage=97&rft.pages=89-97&rft.issn=0933-3657&rft.eissn=1873-2860&rft_id=info:doi/10.1016/j.artmed.2018.11.005&rft_dat=%3Cproquest_cross%3E2155150968%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2155150968&rft_id=info:pmid/30528359&rft_els_id=S0933365717301513&rfr_iscdi=true