The wave-turbulence transition for stratified flows

Mixing in a stratified ocean is controlled by different physics, depending on the large-scale Richardson number. At high Richardson numbers, mixing is controlled by interactions between internal wave modes. At Richardson numbers of order 1, mixing is controlled by instabilities of the large-scale wa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physical oceanography 2000-07, Vol.30 (7), p.1669-1678
Hauptverfasser: D'ASARO, E. A, LIEN, R.-C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1678
container_issue 7
container_start_page 1669
container_title Journal of physical oceanography
container_volume 30
creator D'ASARO, E. A
LIEN, R.-C
description Mixing in a stratified ocean is controlled by different physics, depending on the large-scale Richardson number. At high Richardson numbers, mixing is controlled by interactions between internal wave modes. At Richardson numbers of order 1, mixing is controlled by instabilities of the large-scale wave modes. A "wave-turbulence" (W-T) transition separates these two regimes. This paper investigates the W-T transition, using observed oceanic and atmospheric spectra and parameterizations. Viewed in terms of Lagrangian (intrinsic) frequency spectra, the transition occurs when the inertial subrange of turbulence, confined to frequencies greater than the buoyancy frequency N, reaches the level of the internal waves, confined to frequencies less than N. Viewed in terms of vertical wavenumber spectra, the W-T transition occurs when the bandwidth of internal waves becomes small. Both of these singularities occur when the typical internal wave velocity becomes comparable to the phase speed of the lowest internal wave mode. At energies below that of the W-T transition, the dissipation rate varies as the energy squared; above the transition the dependence is linear. The transition occurs at lower shear and dissipation rates where the phase speed of the lowest mode is smaller, that is, in shallower water for the same stratification. Traditional turbulence closure models, which ignore internal waves, can be accurate only at energies above the W-T transition.
doi_str_mv 10.1175/1520-0485(2000)030<1669:TWTTFS>2.0.CO;2
format Article
fullrecord <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_proquest_miscellaneous_21508801</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>21508801</sourcerecordid><originalsourceid>FETCH-LOGICAL-p244t-a79b5d6c594aab3ff7e6a9db73fd42271e30cdffa90d7fd195ba8e7c94a12b433</originalsourceid><addsrcrecordid>eNqFz0tLw0AUBeBBFKzV_5CFiC7S3rnzyqgIUqwKhS6MuAyTeWAkTWomsfjvDVjcuroc-M6BS8icwoxSJeZUIKTAM3GJAHAFDG6plPo6f8vz5csdzmC2WN_gAZn8yUMyAUBMmVRwTE5i_BibkqKeEJa_-2RnvnzaD1051L6xPuk708Sqr9omCW2XxDH3Vai8S0Ld7uIpOQqmjv5sf6fkdfmQL57S1frxeXG_SrfIeZ8apUvhpBWaG1OyEJSXRrtSseA4oqKegXUhGA1OBUe1KE3mlR05xZIzNiUXv7vbrv0cfOyLTRWtr2vT-HaIBVIBWQb0X0iVVJoJHOH5HppoTR3GP20Vi21XbUz3XVDOFY7sB3dDaMI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17679352</pqid></control><display><type>article</type><title>The wave-turbulence transition for stratified flows</title><source>American Meteorological Society</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>D'ASARO, E. A ; LIEN, R.-C</creator><creatorcontrib>D'ASARO, E. A ; LIEN, R.-C</creatorcontrib><description>Mixing in a stratified ocean is controlled by different physics, depending on the large-scale Richardson number. At high Richardson numbers, mixing is controlled by interactions between internal wave modes. At Richardson numbers of order 1, mixing is controlled by instabilities of the large-scale wave modes. A "wave-turbulence" (W-T) transition separates these two regimes. This paper investigates the W-T transition, using observed oceanic and atmospheric spectra and parameterizations. Viewed in terms of Lagrangian (intrinsic) frequency spectra, the transition occurs when the inertial subrange of turbulence, confined to frequencies greater than the buoyancy frequency N, reaches the level of the internal waves, confined to frequencies less than N. Viewed in terms of vertical wavenumber spectra, the W-T transition occurs when the bandwidth of internal waves becomes small. Both of these singularities occur when the typical internal wave velocity becomes comparable to the phase speed of the lowest internal wave mode. At energies below that of the W-T transition, the dissipation rate varies as the energy squared; above the transition the dependence is linear. The transition occurs at lower shear and dissipation rates where the phase speed of the lowest mode is smaller, that is, in shallower water for the same stratification. Traditional turbulence closure models, which ignore internal waves, can be accurate only at energies above the W-T transition.</description><identifier>ISSN: 0022-3670</identifier><identifier>EISSN: 1520-0485</identifier><identifier>DOI: 10.1175/1520-0485(2000)030&lt;1669:TWTTFS&gt;2.0.CO;2</identifier><identifier>CODEN: JPYOBT</identifier><language>eng</language><publisher>Boston, MA: American Meteorological Society</publisher><subject>Earth, ocean, space ; Exact sciences and technology ; External geophysics ; Marine ; Other topics ; Physics of the oceans</subject><ispartof>Journal of physical oceanography, 2000-07, Vol.30 (7), p.1669-1678</ispartof><rights>2000 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27907,27908</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1447252$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>D'ASARO, E. A</creatorcontrib><creatorcontrib>LIEN, R.-C</creatorcontrib><title>The wave-turbulence transition for stratified flows</title><title>Journal of physical oceanography</title><description>Mixing in a stratified ocean is controlled by different physics, depending on the large-scale Richardson number. At high Richardson numbers, mixing is controlled by interactions between internal wave modes. At Richardson numbers of order 1, mixing is controlled by instabilities of the large-scale wave modes. A "wave-turbulence" (W-T) transition separates these two regimes. This paper investigates the W-T transition, using observed oceanic and atmospheric spectra and parameterizations. Viewed in terms of Lagrangian (intrinsic) frequency spectra, the transition occurs when the inertial subrange of turbulence, confined to frequencies greater than the buoyancy frequency N, reaches the level of the internal waves, confined to frequencies less than N. Viewed in terms of vertical wavenumber spectra, the W-T transition occurs when the bandwidth of internal waves becomes small. Both of these singularities occur when the typical internal wave velocity becomes comparable to the phase speed of the lowest internal wave mode. At energies below that of the W-T transition, the dissipation rate varies as the energy squared; above the transition the dependence is linear. The transition occurs at lower shear and dissipation rates where the phase speed of the lowest mode is smaller, that is, in shallower water for the same stratification. Traditional turbulence closure models, which ignore internal waves, can be accurate only at energies above the W-T transition.</description><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>External geophysics</subject><subject>Marine</subject><subject>Other topics</subject><subject>Physics of the oceans</subject><issn>0022-3670</issn><issn>1520-0485</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><recordid>eNqFz0tLw0AUBeBBFKzV_5CFiC7S3rnzyqgIUqwKhS6MuAyTeWAkTWomsfjvDVjcuroc-M6BS8icwoxSJeZUIKTAM3GJAHAFDG6plPo6f8vz5csdzmC2WN_gAZn8yUMyAUBMmVRwTE5i_BibkqKeEJa_-2RnvnzaD1051L6xPuk708Sqr9omCW2XxDH3Vai8S0Ld7uIpOQqmjv5sf6fkdfmQL57S1frxeXG_SrfIeZ8apUvhpBWaG1OyEJSXRrtSseA4oqKegXUhGA1OBUe1KE3mlR05xZIzNiUXv7vbrv0cfOyLTRWtr2vT-HaIBVIBWQb0X0iVVJoJHOH5HppoTR3GP20Vi21XbUz3XVDOFY7sB3dDaMI</recordid><startdate>20000701</startdate><enddate>20000701</enddate><creator>D'ASARO, E. A</creator><creator>LIEN, R.-C</creator><general>American Meteorological Society</general><scope>IQODW</scope><scope>7TN</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope><scope>7TG</scope><scope>KL.</scope></search><sort><creationdate>20000701</creationdate><title>The wave-turbulence transition for stratified flows</title><author>D'ASARO, E. A ; LIEN, R.-C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p244t-a79b5d6c594aab3ff7e6a9db73fd42271e30cdffa90d7fd195ba8e7c94a12b433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>External geophysics</topic><topic>Marine</topic><topic>Other topics</topic><topic>Physics of the oceans</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>D'ASARO, E. A</creatorcontrib><creatorcontrib>LIEN, R.-C</creatorcontrib><collection>Pascal-Francis</collection><collection>Oceanic Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><jtitle>Journal of physical oceanography</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>D'ASARO, E. A</au><au>LIEN, R.-C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The wave-turbulence transition for stratified flows</atitle><jtitle>Journal of physical oceanography</jtitle><date>2000-07-01</date><risdate>2000</risdate><volume>30</volume><issue>7</issue><spage>1669</spage><epage>1678</epage><pages>1669-1678</pages><issn>0022-3670</issn><eissn>1520-0485</eissn><coden>JPYOBT</coden><abstract>Mixing in a stratified ocean is controlled by different physics, depending on the large-scale Richardson number. At high Richardson numbers, mixing is controlled by interactions between internal wave modes. At Richardson numbers of order 1, mixing is controlled by instabilities of the large-scale wave modes. A "wave-turbulence" (W-T) transition separates these two regimes. This paper investigates the W-T transition, using observed oceanic and atmospheric spectra and parameterizations. Viewed in terms of Lagrangian (intrinsic) frequency spectra, the transition occurs when the inertial subrange of turbulence, confined to frequencies greater than the buoyancy frequency N, reaches the level of the internal waves, confined to frequencies less than N. Viewed in terms of vertical wavenumber spectra, the W-T transition occurs when the bandwidth of internal waves becomes small. Both of these singularities occur when the typical internal wave velocity becomes comparable to the phase speed of the lowest internal wave mode. At energies below that of the W-T transition, the dissipation rate varies as the energy squared; above the transition the dependence is linear. The transition occurs at lower shear and dissipation rates where the phase speed of the lowest mode is smaller, that is, in shallower water for the same stratification. Traditional turbulence closure models, which ignore internal waves, can be accurate only at energies above the W-T transition.</abstract><cop>Boston, MA</cop><pub>American Meteorological Society</pub><doi>10.1175/1520-0485(2000)030&lt;1669:TWTTFS&gt;2.0.CO;2</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-3670
ispartof Journal of physical oceanography, 2000-07, Vol.30 (7), p.1669-1678
issn 0022-3670
1520-0485
language eng
recordid cdi_proquest_miscellaneous_21508801
source American Meteorological Society; EZB-FREE-00999 freely available EZB journals
subjects Earth, ocean, space
Exact sciences and technology
External geophysics
Marine
Other topics
Physics of the oceans
title The wave-turbulence transition for stratified flows
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T02%3A30%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20wave-turbulence%20transition%20for%20stratified%20flows&rft.jtitle=Journal%20of%20physical%20oceanography&rft.au=D'ASARO,%20E.%20A&rft.date=2000-07-01&rft.volume=30&rft.issue=7&rft.spage=1669&rft.epage=1678&rft.pages=1669-1678&rft.issn=0022-3670&rft.eissn=1520-0485&rft.coden=JPYOBT&rft_id=info:doi/10.1175/1520-0485(2000)030%3C1669:TWTTFS%3E2.0.CO;2&rft_dat=%3Cproquest_pasca%3E21508801%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=17679352&rft_id=info:pmid/&rfr_iscdi=true