Interdecadal Variations of Meridional Winds in the South China Sea and Their Relationship with Summer Climate in China
Analysis of the NCEP and 40-yr ECMWF Re-Analysis (ERA-40) data and the Xisha Island station observation indicates that the low-level meridional wind (LLMW) over the South China Sea (SCS) experienced an interdecadal variation since the late 1970s. The LLMW change is associated with the reduction of t...
Gespeichert in:
Veröffentlicht in: | Journal of climate 2010-02, Vol.23 (4), p.825-841 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 841 |
---|---|
container_issue | 4 |
container_start_page | 825 |
container_title | Journal of climate |
container_volume | 23 |
creator | Li, Chunhui Li, Tim Liang, Jianyin Gu, Dejun Lin, Ailan Zheng, Bin |
description | Analysis of the NCEP and 40-yr ECMWF Re-Analysis (ERA-40) data and the Xisha Island station observation indicates that the low-level meridional wind (LLMW) over the South China Sea (SCS) experienced an interdecadal variation since the late 1970s. The LLMW change is associated with the reduction of tropospheric temperature in midlatitude East Asia. A mechanism is put forward to explain the triggering and maintenance of the tropospheric cooling. The enhanced convective heating over the southern South China Sea results in a meridional vertical overturning circulation, with anomalous descending motion appearing over continental East Asia. The anomalous descending motion reduces the local humidity through both anomalous low-level divergence and dry vertical advection. The decrease of the local tropospheric humidity leads to the enhanced outgoing longwave radiation into space and thus cold temperature anomalies. The decrease of the temperature and thickness leads to anomalous low (high) pressure and convergent (divergent) flows at upper (lower) levels. This further enhances the descending motion and leads to a positive feedback loop.
The fall in tropospheric temperature over continental East Asia reduces the land–sea thermal contrast and leads to the weakening of cross-equatorial flows and the LLMW over SCS. A further diagnosis indicates that the LLMW is closely linked to the summer precipitation and temperature variations in China on interdecadal time scales. A weakening of the LLMW after 1976 is associated with a “−, +, −” meridional rainfall pattern, with less rain in Guangdong Province and north China but more rain in the Yangtze and Huaihe River basins and northeast China, and a “+, −, +” temperature pattern, with increased (decreased) surface temperature in the south and north (central) China. |
doi_str_mv | 10.1175/2009JCLI2762.1 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_21508188</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26189658</jstor_id><sourcerecordid>26189658</sourcerecordid><originalsourceid>FETCH-LOGICAL-c417t-94fc7f4800dcf9fa62da6013a6cb757d1875b92836f71a8a747d970f740ec8ad3</originalsourceid><addsrcrecordid>eNp10c9rFDEUB_AgFlxbr94KQam3WV8ymSRzlKGtK1sEt-pxeM0PJsvszJrMWPrfN3VLLYKnEN7n-4XHI-QtgyVjqvrIAeovzXrFleRL9oIsWMWhACH4S7IAXYtCq6p6RV6ntAVgXAIsyO_VMLlonUGLPf2BMeAUxiHR0dMrF4PNnzz4GQabaBjo1Dm6Geepo00XBqQbhxQHS687FyL95vpDvAt7ehuy2sy7nYu06cMOJ_fQ8Cd3Qo489sm9eXyPyfeL8-vmc7H-erlqPq0LI5iailp4o7zQANb42qPkFiWwEqW5UZWyLG90U3NdSq8YalRC2VqBVwKc0WjLY_Lh0LuP46_ZpandhWRc3-Pgxjm1nFWgmdYZvv8Hbsc55tWz0UyUkpXAs3r3X8W5VpyLOqPlAZk4phSdb_cxbx_vWgbtw6Xa55dqWQ6cPbZiMtj7iIMJ6SmVS7XUsszu9OC2aRrj37lkupaVLu8BLbybcQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>222872249</pqid></control><display><type>article</type><title>Interdecadal Variations of Meridional Winds in the South China Sea and Their Relationship with Summer Climate in China</title><source>American Meteorological Society</source><source>JSTOR Archive Collection A-Z Listing</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Li, Chunhui ; Li, Tim ; Liang, Jianyin ; Gu, Dejun ; Lin, Ailan ; Zheng, Bin</creator><creatorcontrib>Li, Chunhui ; Li, Tim ; Liang, Jianyin ; Gu, Dejun ; Lin, Ailan ; Zheng, Bin</creatorcontrib><description>Analysis of the NCEP and 40-yr ECMWF Re-Analysis (ERA-40) data and the Xisha Island station observation indicates that the low-level meridional wind (LLMW) over the South China Sea (SCS) experienced an interdecadal variation since the late 1970s. The LLMW change is associated with the reduction of tropospheric temperature in midlatitude East Asia. A mechanism is put forward to explain the triggering and maintenance of the tropospheric cooling. The enhanced convective heating over the southern South China Sea results in a meridional vertical overturning circulation, with anomalous descending motion appearing over continental East Asia. The anomalous descending motion reduces the local humidity through both anomalous low-level divergence and dry vertical advection. The decrease of the local tropospheric humidity leads to the enhanced outgoing longwave radiation into space and thus cold temperature anomalies. The decrease of the temperature and thickness leads to anomalous low (high) pressure and convergent (divergent) flows at upper (lower) levels. This further enhances the descending motion and leads to a positive feedback loop.
The fall in tropospheric temperature over continental East Asia reduces the land–sea thermal contrast and leads to the weakening of cross-equatorial flows and the LLMW over SCS. A further diagnosis indicates that the LLMW is closely linked to the summer precipitation and temperature variations in China on interdecadal time scales. A weakening of the LLMW after 1976 is associated with a “−, +, −” meridional rainfall pattern, with less rain in Guangdong Province and north China but more rain in the Yangtze and Huaihe River basins and northeast China, and a “+, −, +” temperature pattern, with increased (decreased) surface temperature in the south and north (central) China.</description><identifier>ISSN: 0894-8755</identifier><identifier>EISSN: 1520-0442</identifier><identifier>DOI: 10.1175/2009JCLI2762.1</identifier><language>eng</language><publisher>Boston, MA: American Meteorological Society</publisher><subject>Advection ; Anomalies ; Climate change ; Climatic analysis ; Convective heating ; Cooling ; Correlations ; Earth, ocean, space ; El Nino ; Exact sciences and technology ; External geophysics ; Feedback loops ; Humidity ; Islands ; Long wave radiation ; Marine ; Meridional wind ; Meteorology ; Methods ; Monsoons ; Movement ; Normal distribution ; Oceanic analysis ; Oceans ; Positive feedback ; Precipitation ; Radiation ; Rain ; Rainfall ; Rainfall patterns ; River basins ; Seas ; Seasonal variations ; Seasons ; Studies ; Summer ; Summer climates ; Summer precipitation ; Surface temperature ; Temperature anomalies ; Temperature patterns ; Temperature variations ; Time series ; Troposphere ; Tropospheric humidity ; Variation ; Vertical advection ; Wind ; Winds ; Winds and their effects</subject><ispartof>Journal of climate, 2010-02, Vol.23 (4), p.825-841</ispartof><rights>2010 American Meteorological Society</rights><rights>2015 INIST-CNRS</rights><rights>Copyright American Meteorological Society Feb 15, 2010</rights><rights>Copyright American Meteorological Society 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c417t-94fc7f4800dcf9fa62da6013a6cb757d1875b92836f71a8a747d970f740ec8ad3</citedby><cites>FETCH-LOGICAL-c417t-94fc7f4800dcf9fa62da6013a6cb757d1875b92836f71a8a747d970f740ec8ad3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26189658$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26189658$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,3681,27924,27925,58017,58250</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22486863$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Chunhui</creatorcontrib><creatorcontrib>Li, Tim</creatorcontrib><creatorcontrib>Liang, Jianyin</creatorcontrib><creatorcontrib>Gu, Dejun</creatorcontrib><creatorcontrib>Lin, Ailan</creatorcontrib><creatorcontrib>Zheng, Bin</creatorcontrib><title>Interdecadal Variations of Meridional Winds in the South China Sea and Their Relationship with Summer Climate in China</title><title>Journal of climate</title><description>Analysis of the NCEP and 40-yr ECMWF Re-Analysis (ERA-40) data and the Xisha Island station observation indicates that the low-level meridional wind (LLMW) over the South China Sea (SCS) experienced an interdecadal variation since the late 1970s. The LLMW change is associated with the reduction of tropospheric temperature in midlatitude East Asia. A mechanism is put forward to explain the triggering and maintenance of the tropospheric cooling. The enhanced convective heating over the southern South China Sea results in a meridional vertical overturning circulation, with anomalous descending motion appearing over continental East Asia. The anomalous descending motion reduces the local humidity through both anomalous low-level divergence and dry vertical advection. The decrease of the local tropospheric humidity leads to the enhanced outgoing longwave radiation into space and thus cold temperature anomalies. The decrease of the temperature and thickness leads to anomalous low (high) pressure and convergent (divergent) flows at upper (lower) levels. This further enhances the descending motion and leads to a positive feedback loop.
The fall in tropospheric temperature over continental East Asia reduces the land–sea thermal contrast and leads to the weakening of cross-equatorial flows and the LLMW over SCS. A further diagnosis indicates that the LLMW is closely linked to the summer precipitation and temperature variations in China on interdecadal time scales. A weakening of the LLMW after 1976 is associated with a “−, +, −” meridional rainfall pattern, with less rain in Guangdong Province and north China but more rain in the Yangtze and Huaihe River basins and northeast China, and a “+, −, +” temperature pattern, with increased (decreased) surface temperature in the south and north (central) China.</description><subject>Advection</subject><subject>Anomalies</subject><subject>Climate change</subject><subject>Climatic analysis</subject><subject>Convective heating</subject><subject>Cooling</subject><subject>Correlations</subject><subject>Earth, ocean, space</subject><subject>El Nino</subject><subject>Exact sciences and technology</subject><subject>External geophysics</subject><subject>Feedback loops</subject><subject>Humidity</subject><subject>Islands</subject><subject>Long wave radiation</subject><subject>Marine</subject><subject>Meridional wind</subject><subject>Meteorology</subject><subject>Methods</subject><subject>Monsoons</subject><subject>Movement</subject><subject>Normal distribution</subject><subject>Oceanic analysis</subject><subject>Oceans</subject><subject>Positive feedback</subject><subject>Precipitation</subject><subject>Radiation</subject><subject>Rain</subject><subject>Rainfall</subject><subject>Rainfall patterns</subject><subject>River basins</subject><subject>Seas</subject><subject>Seasonal variations</subject><subject>Seasons</subject><subject>Studies</subject><subject>Summer</subject><subject>Summer climates</subject><subject>Summer precipitation</subject><subject>Surface temperature</subject><subject>Temperature anomalies</subject><subject>Temperature patterns</subject><subject>Temperature variations</subject><subject>Time series</subject><subject>Troposphere</subject><subject>Tropospheric humidity</subject><subject>Variation</subject><subject>Vertical advection</subject><subject>Wind</subject><subject>Winds</subject><subject>Winds and their effects</subject><issn>0894-8755</issn><issn>1520-0442</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp10c9rFDEUB_AgFlxbr94KQam3WV8ymSRzlKGtK1sEt-pxeM0PJsvszJrMWPrfN3VLLYKnEN7n-4XHI-QtgyVjqvrIAeovzXrFleRL9oIsWMWhACH4S7IAXYtCq6p6RV6ntAVgXAIsyO_VMLlonUGLPf2BMeAUxiHR0dMrF4PNnzz4GQabaBjo1Dm6Geepo00XBqQbhxQHS687FyL95vpDvAt7ehuy2sy7nYu06cMOJ_fQ8Cd3Qo489sm9eXyPyfeL8-vmc7H-erlqPq0LI5iailp4o7zQANb42qPkFiWwEqW5UZWyLG90U3NdSq8YalRC2VqBVwKc0WjLY_Lh0LuP46_ZpandhWRc3-Pgxjm1nFWgmdYZvv8Hbsc55tWz0UyUkpXAs3r3X8W5VpyLOqPlAZk4phSdb_cxbx_vWgbtw6Xa55dqWQ6cPbZiMtj7iIMJ6SmVS7XUsszu9OC2aRrj37lkupaVLu8BLbybcQ</recordid><startdate>20100201</startdate><enddate>20100201</enddate><creator>Li, Chunhui</creator><creator>Li, Tim</creator><creator>Liang, Jianyin</creator><creator>Gu, Dejun</creator><creator>Lin, Ailan</creator><creator>Zheng, Bin</creator><general>American Meteorological Society</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QH</scope><scope>7TG</scope><scope>7UA</scope><scope>7X2</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>8AF</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>M0K</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>S0X</scope><scope>7TN</scope></search><sort><creationdate>20100201</creationdate><title>Interdecadal Variations of Meridional Winds in the South China Sea and Their Relationship with Summer Climate in China</title><author>Li, Chunhui ; Li, Tim ; Liang, Jianyin ; Gu, Dejun ; Lin, Ailan ; Zheng, Bin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c417t-94fc7f4800dcf9fa62da6013a6cb757d1875b92836f71a8a747d970f740ec8ad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Advection</topic><topic>Anomalies</topic><topic>Climate change</topic><topic>Climatic analysis</topic><topic>Convective heating</topic><topic>Cooling</topic><topic>Correlations</topic><topic>Earth, ocean, space</topic><topic>El Nino</topic><topic>Exact sciences and technology</topic><topic>External geophysics</topic><topic>Feedback loops</topic><topic>Humidity</topic><topic>Islands</topic><topic>Long wave radiation</topic><topic>Marine</topic><topic>Meridional wind</topic><topic>Meteorology</topic><topic>Methods</topic><topic>Monsoons</topic><topic>Movement</topic><topic>Normal distribution</topic><topic>Oceanic analysis</topic><topic>Oceans</topic><topic>Positive feedback</topic><topic>Precipitation</topic><topic>Radiation</topic><topic>Rain</topic><topic>Rainfall</topic><topic>Rainfall patterns</topic><topic>River basins</topic><topic>Seas</topic><topic>Seasonal variations</topic><topic>Seasons</topic><topic>Studies</topic><topic>Summer</topic><topic>Summer climates</topic><topic>Summer precipitation</topic><topic>Surface temperature</topic><topic>Temperature anomalies</topic><topic>Temperature patterns</topic><topic>Temperature variations</topic><topic>Time series</topic><topic>Troposphere</topic><topic>Tropospheric humidity</topic><topic>Variation</topic><topic>Vertical advection</topic><topic>Wind</topic><topic>Winds</topic><topic>Winds and their effects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Chunhui</creatorcontrib><creatorcontrib>Li, Tim</creatorcontrib><creatorcontrib>Liang, Jianyin</creatorcontrib><creatorcontrib>Gu, Dejun</creatorcontrib><creatorcontrib>Lin, Ailan</creatorcontrib><creatorcontrib>Zheng, Bin</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Agricultural Science Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>Oceanic Abstracts</collection><jtitle>Journal of climate</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Chunhui</au><au>Li, Tim</au><au>Liang, Jianyin</au><au>Gu, Dejun</au><au>Lin, Ailan</au><au>Zheng, Bin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interdecadal Variations of Meridional Winds in the South China Sea and Their Relationship with Summer Climate in China</atitle><jtitle>Journal of climate</jtitle><date>2010-02-01</date><risdate>2010</risdate><volume>23</volume><issue>4</issue><spage>825</spage><epage>841</epage><pages>825-841</pages><issn>0894-8755</issn><eissn>1520-0442</eissn><abstract>Analysis of the NCEP and 40-yr ECMWF Re-Analysis (ERA-40) data and the Xisha Island station observation indicates that the low-level meridional wind (LLMW) over the South China Sea (SCS) experienced an interdecadal variation since the late 1970s. The LLMW change is associated with the reduction of tropospheric temperature in midlatitude East Asia. A mechanism is put forward to explain the triggering and maintenance of the tropospheric cooling. The enhanced convective heating over the southern South China Sea results in a meridional vertical overturning circulation, with anomalous descending motion appearing over continental East Asia. The anomalous descending motion reduces the local humidity through both anomalous low-level divergence and dry vertical advection. The decrease of the local tropospheric humidity leads to the enhanced outgoing longwave radiation into space and thus cold temperature anomalies. The decrease of the temperature and thickness leads to anomalous low (high) pressure and convergent (divergent) flows at upper (lower) levels. This further enhances the descending motion and leads to a positive feedback loop.
The fall in tropospheric temperature over continental East Asia reduces the land–sea thermal contrast and leads to the weakening of cross-equatorial flows and the LLMW over SCS. A further diagnosis indicates that the LLMW is closely linked to the summer precipitation and temperature variations in China on interdecadal time scales. A weakening of the LLMW after 1976 is associated with a “−, +, −” meridional rainfall pattern, with less rain in Guangdong Province and north China but more rain in the Yangtze and Huaihe River basins and northeast China, and a “+, −, +” temperature pattern, with increased (decreased) surface temperature in the south and north (central) China.</abstract><cop>Boston, MA</cop><pub>American Meteorological Society</pub><doi>10.1175/2009JCLI2762.1</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0894-8755 |
ispartof | Journal of climate, 2010-02, Vol.23 (4), p.825-841 |
issn | 0894-8755 1520-0442 |
language | eng |
recordid | cdi_proquest_miscellaneous_21508188 |
source | American Meteorological Society; JSTOR Archive Collection A-Z Listing; EZB-FREE-00999 freely available EZB journals |
subjects | Advection Anomalies Climate change Climatic analysis Convective heating Cooling Correlations Earth, ocean, space El Nino Exact sciences and technology External geophysics Feedback loops Humidity Islands Long wave radiation Marine Meridional wind Meteorology Methods Monsoons Movement Normal distribution Oceanic analysis Oceans Positive feedback Precipitation Radiation Rain Rainfall Rainfall patterns River basins Seas Seasonal variations Seasons Studies Summer Summer climates Summer precipitation Surface temperature Temperature anomalies Temperature patterns Temperature variations Time series Troposphere Tropospheric humidity Variation Vertical advection Wind Winds Winds and their effects |
title | Interdecadal Variations of Meridional Winds in the South China Sea and Their Relationship with Summer Climate in China |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T20%3A31%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interdecadal%20Variations%20of%20Meridional%20Winds%20in%20the%20South%20China%20Sea%20and%20Their%20Relationship%20with%20Summer%20Climate%20in%20China&rft.jtitle=Journal%20of%20climate&rft.au=Li,%20Chunhui&rft.date=2010-02-01&rft.volume=23&rft.issue=4&rft.spage=825&rft.epage=841&rft.pages=825-841&rft.issn=0894-8755&rft.eissn=1520-0442&rft_id=info:doi/10.1175/2009JCLI2762.1&rft_dat=%3Cjstor_proqu%3E26189658%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=222872249&rft_id=info:pmid/&rft_jstor_id=26189658&rfr_iscdi=true |