Analysis of body pressure distribution on car seats by using deep learning

This study aimed to extract information from body pressure distribution, including comfort, participant body size, and seat characteristics by using supervised deep learning, and body pressure characteristics corresponding to sensory evaluation by using unsupervised deep learning. Body pressure data...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied ergonomics 2019-02, Vol.75, p.283-287
Hauptverfasser: Mitsuya, Reiko, Kato, Kazuhito, Kou, Nei, Nakamura, Takeshi, Sugawara, Kohei, Dobashi, Hiroki, Sugita, Takuro, Kawai, Takashi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 287
container_issue
container_start_page 283
container_title Applied ergonomics
container_volume 75
creator Mitsuya, Reiko
Kato, Kazuhito
Kou, Nei
Nakamura, Takeshi
Sugawara, Kohei
Dobashi, Hiroki
Sugita, Takuro
Kawai, Takashi
description This study aimed to extract information from body pressure distribution, including comfort, participant body size, and seat characteristics by using supervised deep learning, and body pressure characteristics corresponding to sensory evaluation by using unsupervised deep learning. Body pressure data of 18 participants and 19 kinds of car seats were used for the analysis. Sensory evaluation of 9 items concerning cushion characteristics and seat comfort was conducted. From the analysis, we determined that body size and car seats could be classified with high precision by using body pressure distribution data. For the sensory evaluation items, the correct answer rate was high. By examining the importance of the cells of the mat, the features of the body pressure mat at the seat cushion and backrest, body size, car seat, and parts related to sensory evaluation could be determined in detail. The study findings can be applied in the development of car seats. •Information from body pressure data by using supervised deep learning is extracted.•Body pressure characteristics by using unsupervised deep learning is found.•Body size and car seats could be classified with high precision.•Findings can be applied in the development of car seats.
doi_str_mv 10.1016/j.apergo.2018.08.023
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2149855777</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0003687018303351</els_id><sourcerecordid>2149855777</sourcerecordid><originalsourceid>FETCH-LOGICAL-c405t-69fb27edb89e6e1aac3f821236a0eb8db4835e08ac0a70cf102c074bc028fba13</originalsourceid><addsrcrecordid>eNp9kFtLxDAQhYMoul7-gUgefek6SXpJXwQRrwi-6HNI0qlk6bY10wr7782y6qNwYDhwzgzzMXYuYClAlFerpR0xfgxLCUIvIUmqPbYQupJZLWS5zxYAoLJSV3DEjolWyepcFIfsSEEBdaH0gj3f9LbbUCA-tNwNzYaPEYnmiLwJNMXg5ikMPU_yNnJCOxF3Gz5T6D94gzjyDm3skztlB63tCM9-5gl7v797u33MXl4fnm5vXjKfQzFlZd06WWHjdI0lCmu9arUUUpUW0OnG5VoVCNp6sBX4VoD0UOXOg9Sts0KdsMvd3jEOnzPSZNaBPHad7XGYyUiR17ooqqpK0XwX9XEgitiaMYa1jRsjwGwpmpXZUTRbigaSpEq1i58Ls1tj81f6xZYC17sApj-_AkZDPmDvsQkR_WSaIfx_4RtYI4XF</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2149855777</pqid></control><display><type>article</type><title>Analysis of body pressure distribution on car seats by using deep learning</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Mitsuya, Reiko ; Kato, Kazuhito ; Kou, Nei ; Nakamura, Takeshi ; Sugawara, Kohei ; Dobashi, Hiroki ; Sugita, Takuro ; Kawai, Takashi</creator><creatorcontrib>Mitsuya, Reiko ; Kato, Kazuhito ; Kou, Nei ; Nakamura, Takeshi ; Sugawara, Kohei ; Dobashi, Hiroki ; Sugita, Takuro ; Kawai, Takashi</creatorcontrib><description>This study aimed to extract information from body pressure distribution, including comfort, participant body size, and seat characteristics by using supervised deep learning, and body pressure characteristics corresponding to sensory evaluation by using unsupervised deep learning. Body pressure data of 18 participants and 19 kinds of car seats were used for the analysis. Sensory evaluation of 9 items concerning cushion characteristics and seat comfort was conducted. From the analysis, we determined that body size and car seats could be classified with high precision by using body pressure distribution data. For the sensory evaluation items, the correct answer rate was high. By examining the importance of the cells of the mat, the features of the body pressure mat at the seat cushion and backrest, body size, car seat, and parts related to sensory evaluation could be determined in detail. The study findings can be applied in the development of car seats. •Information from body pressure data by using supervised deep learning is extracted.•Body pressure characteristics by using unsupervised deep learning is found.•Body size and car seats could be classified with high precision.•Findings can be applied in the development of car seats.</description><identifier>ISSN: 0003-6870</identifier><identifier>EISSN: 1872-9126</identifier><identifier>DOI: 10.1016/j.apergo.2018.08.023</identifier><identifier>PMID: 30509538</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Adult ; Automobiles ; Body pressure distribution ; Body Size ; Car seat ; Characteristics extraction ; Deep Learning ; Equipment Design ; Ergonomics - methods ; Female ; Healthy Volunteers ; Humans ; Machine learning ; Male ; Pressure ; Sitting Position ; Support vector machine</subject><ispartof>Applied ergonomics, 2019-02, Vol.75, p.283-287</ispartof><rights>2018 Elsevier Ltd</rights><rights>Copyright © 2018 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c405t-69fb27edb89e6e1aac3f821236a0eb8db4835e08ac0a70cf102c074bc028fba13</citedby><cites>FETCH-LOGICAL-c405t-69fb27edb89e6e1aac3f821236a0eb8db4835e08ac0a70cf102c074bc028fba13</cites><orcidid>0000-0003-2608-927X ; 0000-0002-7174-4205 ; 0000-0003-3786-1771</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0003687018303351$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30509538$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mitsuya, Reiko</creatorcontrib><creatorcontrib>Kato, Kazuhito</creatorcontrib><creatorcontrib>Kou, Nei</creatorcontrib><creatorcontrib>Nakamura, Takeshi</creatorcontrib><creatorcontrib>Sugawara, Kohei</creatorcontrib><creatorcontrib>Dobashi, Hiroki</creatorcontrib><creatorcontrib>Sugita, Takuro</creatorcontrib><creatorcontrib>Kawai, Takashi</creatorcontrib><title>Analysis of body pressure distribution on car seats by using deep learning</title><title>Applied ergonomics</title><addtitle>Appl Ergon</addtitle><description>This study aimed to extract information from body pressure distribution, including comfort, participant body size, and seat characteristics by using supervised deep learning, and body pressure characteristics corresponding to sensory evaluation by using unsupervised deep learning. Body pressure data of 18 participants and 19 kinds of car seats were used for the analysis. Sensory evaluation of 9 items concerning cushion characteristics and seat comfort was conducted. From the analysis, we determined that body size and car seats could be classified with high precision by using body pressure distribution data. For the sensory evaluation items, the correct answer rate was high. By examining the importance of the cells of the mat, the features of the body pressure mat at the seat cushion and backrest, body size, car seat, and parts related to sensory evaluation could be determined in detail. The study findings can be applied in the development of car seats. •Information from body pressure data by using supervised deep learning is extracted.•Body pressure characteristics by using unsupervised deep learning is found.•Body size and car seats could be classified with high precision.•Findings can be applied in the development of car seats.</description><subject>Adult</subject><subject>Automobiles</subject><subject>Body pressure distribution</subject><subject>Body Size</subject><subject>Car seat</subject><subject>Characteristics extraction</subject><subject>Deep Learning</subject><subject>Equipment Design</subject><subject>Ergonomics - methods</subject><subject>Female</subject><subject>Healthy Volunteers</subject><subject>Humans</subject><subject>Machine learning</subject><subject>Male</subject><subject>Pressure</subject><subject>Sitting Position</subject><subject>Support vector machine</subject><issn>0003-6870</issn><issn>1872-9126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kFtLxDAQhYMoul7-gUgefek6SXpJXwQRrwi-6HNI0qlk6bY10wr7782y6qNwYDhwzgzzMXYuYClAlFerpR0xfgxLCUIvIUmqPbYQupJZLWS5zxYAoLJSV3DEjolWyepcFIfsSEEBdaH0gj3f9LbbUCA-tNwNzYaPEYnmiLwJNMXg5ikMPU_yNnJCOxF3Gz5T6D94gzjyDm3skztlB63tCM9-5gl7v797u33MXl4fnm5vXjKfQzFlZd06WWHjdI0lCmu9arUUUpUW0OnG5VoVCNp6sBX4VoD0UOXOg9Sts0KdsMvd3jEOnzPSZNaBPHad7XGYyUiR17ooqqpK0XwX9XEgitiaMYa1jRsjwGwpmpXZUTRbigaSpEq1i58Ls1tj81f6xZYC17sApj-_AkZDPmDvsQkR_WSaIfx_4RtYI4XF</recordid><startdate>20190201</startdate><enddate>20190201</enddate><creator>Mitsuya, Reiko</creator><creator>Kato, Kazuhito</creator><creator>Kou, Nei</creator><creator>Nakamura, Takeshi</creator><creator>Sugawara, Kohei</creator><creator>Dobashi, Hiroki</creator><creator>Sugita, Takuro</creator><creator>Kawai, Takashi</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2608-927X</orcidid><orcidid>https://orcid.org/0000-0002-7174-4205</orcidid><orcidid>https://orcid.org/0000-0003-3786-1771</orcidid></search><sort><creationdate>20190201</creationdate><title>Analysis of body pressure distribution on car seats by using deep learning</title><author>Mitsuya, Reiko ; Kato, Kazuhito ; Kou, Nei ; Nakamura, Takeshi ; Sugawara, Kohei ; Dobashi, Hiroki ; Sugita, Takuro ; Kawai, Takashi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c405t-69fb27edb89e6e1aac3f821236a0eb8db4835e08ac0a70cf102c074bc028fba13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Adult</topic><topic>Automobiles</topic><topic>Body pressure distribution</topic><topic>Body Size</topic><topic>Car seat</topic><topic>Characteristics extraction</topic><topic>Deep Learning</topic><topic>Equipment Design</topic><topic>Ergonomics - methods</topic><topic>Female</topic><topic>Healthy Volunteers</topic><topic>Humans</topic><topic>Machine learning</topic><topic>Male</topic><topic>Pressure</topic><topic>Sitting Position</topic><topic>Support vector machine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mitsuya, Reiko</creatorcontrib><creatorcontrib>Kato, Kazuhito</creatorcontrib><creatorcontrib>Kou, Nei</creatorcontrib><creatorcontrib>Nakamura, Takeshi</creatorcontrib><creatorcontrib>Sugawara, Kohei</creatorcontrib><creatorcontrib>Dobashi, Hiroki</creatorcontrib><creatorcontrib>Sugita, Takuro</creatorcontrib><creatorcontrib>Kawai, Takashi</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Applied ergonomics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mitsuya, Reiko</au><au>Kato, Kazuhito</au><au>Kou, Nei</au><au>Nakamura, Takeshi</au><au>Sugawara, Kohei</au><au>Dobashi, Hiroki</au><au>Sugita, Takuro</au><au>Kawai, Takashi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis of body pressure distribution on car seats by using deep learning</atitle><jtitle>Applied ergonomics</jtitle><addtitle>Appl Ergon</addtitle><date>2019-02-01</date><risdate>2019</risdate><volume>75</volume><spage>283</spage><epage>287</epage><pages>283-287</pages><issn>0003-6870</issn><eissn>1872-9126</eissn><abstract>This study aimed to extract information from body pressure distribution, including comfort, participant body size, and seat characteristics by using supervised deep learning, and body pressure characteristics corresponding to sensory evaluation by using unsupervised deep learning. Body pressure data of 18 participants and 19 kinds of car seats were used for the analysis. Sensory evaluation of 9 items concerning cushion characteristics and seat comfort was conducted. From the analysis, we determined that body size and car seats could be classified with high precision by using body pressure distribution data. For the sensory evaluation items, the correct answer rate was high. By examining the importance of the cells of the mat, the features of the body pressure mat at the seat cushion and backrest, body size, car seat, and parts related to sensory evaluation could be determined in detail. The study findings can be applied in the development of car seats. •Information from body pressure data by using supervised deep learning is extracted.•Body pressure characteristics by using unsupervised deep learning is found.•Body size and car seats could be classified with high precision.•Findings can be applied in the development of car seats.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>30509538</pmid><doi>10.1016/j.apergo.2018.08.023</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0003-2608-927X</orcidid><orcidid>https://orcid.org/0000-0002-7174-4205</orcidid><orcidid>https://orcid.org/0000-0003-3786-1771</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0003-6870
ispartof Applied ergonomics, 2019-02, Vol.75, p.283-287
issn 0003-6870
1872-9126
language eng
recordid cdi_proquest_miscellaneous_2149855777
source MEDLINE; Elsevier ScienceDirect Journals Complete
subjects Adult
Automobiles
Body pressure distribution
Body Size
Car seat
Characteristics extraction
Deep Learning
Equipment Design
Ergonomics - methods
Female
Healthy Volunteers
Humans
Machine learning
Male
Pressure
Sitting Position
Support vector machine
title Analysis of body pressure distribution on car seats by using deep learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T13%3A34%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20of%20body%20pressure%20distribution%20on%20car%20seats%20by%20using%20deep%20learning&rft.jtitle=Applied%20ergonomics&rft.au=Mitsuya,%20Reiko&rft.date=2019-02-01&rft.volume=75&rft.spage=283&rft.epage=287&rft.pages=283-287&rft.issn=0003-6870&rft.eissn=1872-9126&rft_id=info:doi/10.1016/j.apergo.2018.08.023&rft_dat=%3Cproquest_cross%3E2149855777%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2149855777&rft_id=info:pmid/30509538&rft_els_id=S0003687018303351&rfr_iscdi=true