A simulator for the analysis of neuronal ensemble activity: application to reaching tasks

A biologically based, multi-cortical computational model was developed to investigate how ensembles of neurons learn to execute a three-dimensional reaching task. The model produces outputs of spike trains that can be analyzed using a variety of multivariate analysis tools. Simulations show that aft...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neurocomputing (Amsterdam) 2002, Vol.44, p.847-854
Hauptverfasser: Hugh, G.S, Laubach, M, Nicolelis, M.A.L, Henriquez, C.S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 854
container_issue
container_start_page 847
container_title Neurocomputing (Amsterdam)
container_volume 44
creator Hugh, G.S
Laubach, M
Nicolelis, M.A.L
Henriquez, C.S
description A biologically based, multi-cortical computational model was developed to investigate how ensembles of neurons learn to execute a three-dimensional reaching task. The model produces outputs of spike trains that can be analyzed using a variety of multivariate analysis tools. Simulations show that after learning, the model neurons exhibit broad directional tuning that depend on the defined muscle directions of the simulated arm, and that these neurons form functional clusters within cortical areas. The utility of the model is demonstrated by testing arm movement prediction strategies using ensemble activity.
doi_str_mv 10.1016/S0925-2312(02)00482-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_21494467</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0925231202004824</els_id><sourcerecordid>621751</sourcerecordid><originalsourceid>FETCH-LOGICAL-c286t-38dff88825d023178305a8e20b5544097d284abc0e83b201beb4b21480ddc9ca3</originalsourceid><addsrcrecordid>eNqFUE1LAzEQDaJgrf4EISfRw-okm-1mvUgpfkHBg3rwFLLZWRvdbtYkLfTfm1rxKswwDPPe480j5JTBJQM2uXqGihcZzxk_B34BICTPxB4ZMVnyTHI52SejP8ghOQrhA4CVjFcj8jalwS5XnY7O0zZ1XCDVve42wQbqWtrjyru0U-wDLusuXU20axs311QPQ2eNjtb1NDrqUZuF7d9p1OEzHJODVncBT37nmLze3b7MHrL50_3jbDrPTHIWs1w2bSul5EUDyV8pcyi0RA51UQgBVdlwKXRtAGVec2A11qLmTEhoGlMZnY_J2U538O5rhSGqpQ0Gu0736FZBJWwlxKRMwGIHNN6F4LFVg7dL7TeKgdoGqX6CVNuUFKTaBqlE4t3seJi-WFv0KhiLvcHGejRRNc7-o_ANUhF67g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>21494467</pqid></control><display><type>article</type><title>A simulator for the analysis of neuronal ensemble activity: application to reaching tasks</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Hugh, G.S ; Laubach, M ; Nicolelis, M.A.L ; Henriquez, C.S</creator><creatorcontrib>Hugh, G.S ; Laubach, M ; Nicolelis, M.A.L ; Henriquez, C.S</creatorcontrib><description>A biologically based, multi-cortical computational model was developed to investigate how ensembles of neurons learn to execute a three-dimensional reaching task. The model produces outputs of spike trains that can be analyzed using a variety of multivariate analysis tools. Simulations show that after learning, the model neurons exhibit broad directional tuning that depend on the defined muscle directions of the simulated arm, and that these neurons form functional clusters within cortical areas. The utility of the model is demonstrated by testing arm movement prediction strategies using ensemble activity.</description><identifier>ISSN: 0925-2312</identifier><identifier>EISSN: 1872-8286</identifier><identifier>DOI: 10.1016/S0925-2312(02)00482-4</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Computer simulation ; Learning systems ; Mathematical models ; Muscle</subject><ispartof>Neurocomputing (Amsterdam), 2002, Vol.44, p.847-854</ispartof><rights>2002</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c286t-38dff88825d023178305a8e20b5544097d284abc0e83b201beb4b21480ddc9ca3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0925-2312(02)00482-4$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,4021,27921,27922,27923,45993</link.rule.ids></links><search><creatorcontrib>Hugh, G.S</creatorcontrib><creatorcontrib>Laubach, M</creatorcontrib><creatorcontrib>Nicolelis, M.A.L</creatorcontrib><creatorcontrib>Henriquez, C.S</creatorcontrib><title>A simulator for the analysis of neuronal ensemble activity: application to reaching tasks</title><title>Neurocomputing (Amsterdam)</title><description>A biologically based, multi-cortical computational model was developed to investigate how ensembles of neurons learn to execute a three-dimensional reaching task. The model produces outputs of spike trains that can be analyzed using a variety of multivariate analysis tools. Simulations show that after learning, the model neurons exhibit broad directional tuning that depend on the defined muscle directions of the simulated arm, and that these neurons form functional clusters within cortical areas. The utility of the model is demonstrated by testing arm movement prediction strategies using ensemble activity.</description><subject>Computer simulation</subject><subject>Learning systems</subject><subject>Mathematical models</subject><subject>Muscle</subject><issn>0925-2312</issn><issn>1872-8286</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNqFUE1LAzEQDaJgrf4EISfRw-okm-1mvUgpfkHBg3rwFLLZWRvdbtYkLfTfm1rxKswwDPPe480j5JTBJQM2uXqGihcZzxk_B34BICTPxB4ZMVnyTHI52SejP8ghOQrhA4CVjFcj8jalwS5XnY7O0zZ1XCDVve42wQbqWtrjyru0U-wDLusuXU20axs311QPQ2eNjtb1NDrqUZuF7d9p1OEzHJODVncBT37nmLze3b7MHrL50_3jbDrPTHIWs1w2bSul5EUDyV8pcyi0RA51UQgBVdlwKXRtAGVec2A11qLmTEhoGlMZnY_J2U538O5rhSGqpQ0Gu0736FZBJWwlxKRMwGIHNN6F4LFVg7dL7TeKgdoGqX6CVNuUFKTaBqlE4t3seJi-WFv0KhiLvcHGejRRNc7-o_ANUhF67g</recordid><startdate>2002</startdate><enddate>2002</enddate><creator>Hugh, G.S</creator><creator>Laubach, M</creator><creator>Nicolelis, M.A.L</creator><creator>Henriquez, C.S</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2002</creationdate><title>A simulator for the analysis of neuronal ensemble activity: application to reaching tasks</title><author>Hugh, G.S ; Laubach, M ; Nicolelis, M.A.L ; Henriquez, C.S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c286t-38dff88825d023178305a8e20b5544097d284abc0e83b201beb4b21480ddc9ca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Computer simulation</topic><topic>Learning systems</topic><topic>Mathematical models</topic><topic>Muscle</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hugh, G.S</creatorcontrib><creatorcontrib>Laubach, M</creatorcontrib><creatorcontrib>Nicolelis, M.A.L</creatorcontrib><creatorcontrib>Henriquez, C.S</creatorcontrib><collection>CrossRef</collection><jtitle>Neurocomputing (Amsterdam)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hugh, G.S</au><au>Laubach, M</au><au>Nicolelis, M.A.L</au><au>Henriquez, C.S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A simulator for the analysis of neuronal ensemble activity: application to reaching tasks</atitle><jtitle>Neurocomputing (Amsterdam)</jtitle><date>2002</date><risdate>2002</risdate><volume>44</volume><spage>847</spage><epage>854</epage><pages>847-854</pages><issn>0925-2312</issn><eissn>1872-8286</eissn><abstract>A biologically based, multi-cortical computational model was developed to investigate how ensembles of neurons learn to execute a three-dimensional reaching task. The model produces outputs of spike trains that can be analyzed using a variety of multivariate analysis tools. Simulations show that after learning, the model neurons exhibit broad directional tuning that depend on the defined muscle directions of the simulated arm, and that these neurons form functional clusters within cortical areas. The utility of the model is demonstrated by testing arm movement prediction strategies using ensemble activity.</abstract><pub>Elsevier B.V</pub><doi>10.1016/S0925-2312(02)00482-4</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0925-2312
ispartof Neurocomputing (Amsterdam), 2002, Vol.44, p.847-854
issn 0925-2312
1872-8286
language eng
recordid cdi_proquest_miscellaneous_21494467
source ScienceDirect Journals (5 years ago - present)
subjects Computer simulation
Learning systems
Mathematical models
Muscle
title A simulator for the analysis of neuronal ensemble activity: application to reaching tasks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T23%3A36%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20simulator%20for%20the%20analysis%20of%20neuronal%20ensemble%20activity:%20application%20to%20reaching%20tasks&rft.jtitle=Neurocomputing%20(Amsterdam)&rft.au=Hugh,%20G.S&rft.date=2002&rft.volume=44&rft.spage=847&rft.epage=854&rft.pages=847-854&rft.issn=0925-2312&rft.eissn=1872-8286&rft_id=info:doi/10.1016/S0925-2312(02)00482-4&rft_dat=%3Cproquest_cross%3E621751%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=21494467&rft_id=info:pmid/&rft_els_id=S0925231202004824&rfr_iscdi=true