Generalized predictor based active disturbance rejection control for non-minimum phase systems

In this paper, a generalized predictor based control scheme is proposed to improve system performance of set-point tracking and disturbance rejection for non-minimum phase (NMP) systems. By using a generalized predictor to estimate the system output without time delay, a model-based extended state o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ISA transactions 2019-04, Vol.87, p.34-45
Hauptverfasser: Geng, Xinpeng, Hao, Shoulin, Liu, Tao, Zhong, Chongquan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 45
container_issue
container_start_page 34
container_title ISA transactions
container_volume 87
creator Geng, Xinpeng
Hao, Shoulin
Liu, Tao
Zhong, Chongquan
description In this paper, a generalized predictor based control scheme is proposed to improve system performance of set-point tracking and disturbance rejection for non-minimum phase (NMP) systems. By using a generalized predictor to estimate the system output without time delay, a model-based extended state observer (MESO) is designed to simultaneously estimate the system state and disturbance. Accordingly, an active disturbance rejection control design is developed which consists of a state feedback control and a feedforward control for the disturbance rejection. The MESO and feedback controllers are analytically derived by specifying the desired characteristic roots of MESO and closed-loop system poles, respectively. To improve the output tracking performance, a pre-filter is designed based on a desired closed-loop transfer function for the set-point tracking. A sufficient condition guaranteeing robust stability of the closed-loop system against time-varying uncertainties is established in terms of linear matrix inequalities (LMIs). Three illustrative examples from the literature are used to demonstrate the effectiveness and merit of the proposed control scheme. •A generalized predictor based control scheme for non-minimum phase systems.•Model-based extended state observer for estimating the system state and disturbance.•A pre-filter designed by the desired closed-loop transfer function for set-point tracking.•A sufficient robust stability condition against plant uncertainties and time-varying delay.
doi_str_mv 10.1016/j.isatra.2018.11.002
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2149032270</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0019057818304282</els_id><sourcerecordid>2149032270</sourcerecordid><originalsourceid>FETCH-LOGICAL-c362t-b6cf30b24e3440778eb58096d1c0d2c86ab7a0956a05a5014f0cf5fbf422e5733</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMo7rr6D0R69NI6SZt-XARZdBUWvOjVkKZTTGmbmrQL6683S1ePnoYZnneGeQi5phBRoOldE2knRysjBjSPKI0A2AlZ0jwrQgaMnZIlAC1C4Fm-IBfONeAJXuTnZBEDh5hldEk-Ntijla3-xioYLFZajcYGpXS-l2rUOwwq7cbJlrJXGFhs0E9NHyjTj9a0Qe3x3vRhp3vdTV0wfPps4PZuxM5dkrNatg6vjnVF3p8e39bP4fZ187J-2IYqTtkYlqmqYyhZgnGSQJblWPIcirSiCiqm8lSWmYSCpxK45ECTGlTN67JOGEOexfGK3M57B2u-JnSj6LRT2LayRzM5wWhS-I9ZBh5NZlRZ45zFWgxWd9LuBQVxMCsaMZsVB7OCUuG9-djN8cJUdlj9hX5VeuB-BtD_udNohVMavbNKW69MVEb_f-EHCkWNDg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2149032270</pqid></control><display><type>article</type><title>Generalized predictor based active disturbance rejection control for non-minimum phase systems</title><source>Elsevier ScienceDirect Journals</source><creator>Geng, Xinpeng ; Hao, Shoulin ; Liu, Tao ; Zhong, Chongquan</creator><creatorcontrib>Geng, Xinpeng ; Hao, Shoulin ; Liu, Tao ; Zhong, Chongquan</creatorcontrib><description>In this paper, a generalized predictor based control scheme is proposed to improve system performance of set-point tracking and disturbance rejection for non-minimum phase (NMP) systems. By using a generalized predictor to estimate the system output without time delay, a model-based extended state observer (MESO) is designed to simultaneously estimate the system state and disturbance. Accordingly, an active disturbance rejection control design is developed which consists of a state feedback control and a feedforward control for the disturbance rejection. The MESO and feedback controllers are analytically derived by specifying the desired characteristic roots of MESO and closed-loop system poles, respectively. To improve the output tracking performance, a pre-filter is designed based on a desired closed-loop transfer function for the set-point tracking. A sufficient condition guaranteeing robust stability of the closed-loop system against time-varying uncertainties is established in terms of linear matrix inequalities (LMIs). Three illustrative examples from the literature are used to demonstrate the effectiveness and merit of the proposed control scheme. •A generalized predictor based control scheme for non-minimum phase systems.•Model-based extended state observer for estimating the system state and disturbance.•A pre-filter designed by the desired closed-loop transfer function for set-point tracking.•A sufficient robust stability condition against plant uncertainties and time-varying delay.</description><identifier>ISSN: 0019-0578</identifier><identifier>EISSN: 1879-2022</identifier><identifier>DOI: 10.1016/j.isatra.2018.11.002</identifier><identifier>PMID: 30503271</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Active disturbance rejection control (ADRC) ; Extended state observer ; Generalized predictor ; Input delay ; Non-minimum phase ; Sampled systems</subject><ispartof>ISA transactions, 2019-04, Vol.87, p.34-45</ispartof><rights>2018 ISA</rights><rights>Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c362t-b6cf30b24e3440778eb58096d1c0d2c86ab7a0956a05a5014f0cf5fbf422e5733</citedby><cites>FETCH-LOGICAL-c362t-b6cf30b24e3440778eb58096d1c0d2c86ab7a0956a05a5014f0cf5fbf422e5733</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0019057818304282$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30503271$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Geng, Xinpeng</creatorcontrib><creatorcontrib>Hao, Shoulin</creatorcontrib><creatorcontrib>Liu, Tao</creatorcontrib><creatorcontrib>Zhong, Chongquan</creatorcontrib><title>Generalized predictor based active disturbance rejection control for non-minimum phase systems</title><title>ISA transactions</title><addtitle>ISA Trans</addtitle><description>In this paper, a generalized predictor based control scheme is proposed to improve system performance of set-point tracking and disturbance rejection for non-minimum phase (NMP) systems. By using a generalized predictor to estimate the system output without time delay, a model-based extended state observer (MESO) is designed to simultaneously estimate the system state and disturbance. Accordingly, an active disturbance rejection control design is developed which consists of a state feedback control and a feedforward control for the disturbance rejection. The MESO and feedback controllers are analytically derived by specifying the desired characteristic roots of MESO and closed-loop system poles, respectively. To improve the output tracking performance, a pre-filter is designed based on a desired closed-loop transfer function for the set-point tracking. A sufficient condition guaranteeing robust stability of the closed-loop system against time-varying uncertainties is established in terms of linear matrix inequalities (LMIs). Three illustrative examples from the literature are used to demonstrate the effectiveness and merit of the proposed control scheme. •A generalized predictor based control scheme for non-minimum phase systems.•Model-based extended state observer for estimating the system state and disturbance.•A pre-filter designed by the desired closed-loop transfer function for set-point tracking.•A sufficient robust stability condition against plant uncertainties and time-varying delay.</description><subject>Active disturbance rejection control (ADRC)</subject><subject>Extended state observer</subject><subject>Generalized predictor</subject><subject>Input delay</subject><subject>Non-minimum phase</subject><subject>Sampled systems</subject><issn>0019-0578</issn><issn>1879-2022</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMo7rr6D0R69NI6SZt-XARZdBUWvOjVkKZTTGmbmrQL6683S1ePnoYZnneGeQi5phBRoOldE2knRysjBjSPKI0A2AlZ0jwrQgaMnZIlAC1C4Fm-IBfONeAJXuTnZBEDh5hldEk-Ntijla3-xioYLFZajcYGpXS-l2rUOwwq7cbJlrJXGFhs0E9NHyjTj9a0Qe3x3vRhp3vdTV0wfPps4PZuxM5dkrNatg6vjnVF3p8e39bP4fZ187J-2IYqTtkYlqmqYyhZgnGSQJblWPIcirSiCiqm8lSWmYSCpxK45ECTGlTN67JOGEOexfGK3M57B2u-JnSj6LRT2LayRzM5wWhS-I9ZBh5NZlRZ45zFWgxWd9LuBQVxMCsaMZsVB7OCUuG9-djN8cJUdlj9hX5VeuB-BtD_udNohVMavbNKW69MVEb_f-EHCkWNDg</recordid><startdate>201904</startdate><enddate>201904</enddate><creator>Geng, Xinpeng</creator><creator>Hao, Shoulin</creator><creator>Liu, Tao</creator><creator>Zhong, Chongquan</creator><general>Elsevier Ltd</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201904</creationdate><title>Generalized predictor based active disturbance rejection control for non-minimum phase systems</title><author>Geng, Xinpeng ; Hao, Shoulin ; Liu, Tao ; Zhong, Chongquan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c362t-b6cf30b24e3440778eb58096d1c0d2c86ab7a0956a05a5014f0cf5fbf422e5733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Active disturbance rejection control (ADRC)</topic><topic>Extended state observer</topic><topic>Generalized predictor</topic><topic>Input delay</topic><topic>Non-minimum phase</topic><topic>Sampled systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Geng, Xinpeng</creatorcontrib><creatorcontrib>Hao, Shoulin</creatorcontrib><creatorcontrib>Liu, Tao</creatorcontrib><creatorcontrib>Zhong, Chongquan</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ISA transactions</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Geng, Xinpeng</au><au>Hao, Shoulin</au><au>Liu, Tao</au><au>Zhong, Chongquan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Generalized predictor based active disturbance rejection control for non-minimum phase systems</atitle><jtitle>ISA transactions</jtitle><addtitle>ISA Trans</addtitle><date>2019-04</date><risdate>2019</risdate><volume>87</volume><spage>34</spage><epage>45</epage><pages>34-45</pages><issn>0019-0578</issn><eissn>1879-2022</eissn><abstract>In this paper, a generalized predictor based control scheme is proposed to improve system performance of set-point tracking and disturbance rejection for non-minimum phase (NMP) systems. By using a generalized predictor to estimate the system output without time delay, a model-based extended state observer (MESO) is designed to simultaneously estimate the system state and disturbance. Accordingly, an active disturbance rejection control design is developed which consists of a state feedback control and a feedforward control for the disturbance rejection. The MESO and feedback controllers are analytically derived by specifying the desired characteristic roots of MESO and closed-loop system poles, respectively. To improve the output tracking performance, a pre-filter is designed based on a desired closed-loop transfer function for the set-point tracking. A sufficient condition guaranteeing robust stability of the closed-loop system against time-varying uncertainties is established in terms of linear matrix inequalities (LMIs). Three illustrative examples from the literature are used to demonstrate the effectiveness and merit of the proposed control scheme. •A generalized predictor based control scheme for non-minimum phase systems.•Model-based extended state observer for estimating the system state and disturbance.•A pre-filter designed by the desired closed-loop transfer function for set-point tracking.•A sufficient robust stability condition against plant uncertainties and time-varying delay.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><pmid>30503271</pmid><doi>10.1016/j.isatra.2018.11.002</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0019-0578
ispartof ISA transactions, 2019-04, Vol.87, p.34-45
issn 0019-0578
1879-2022
language eng
recordid cdi_proquest_miscellaneous_2149032270
source Elsevier ScienceDirect Journals
subjects Active disturbance rejection control (ADRC)
Extended state observer
Generalized predictor
Input delay
Non-minimum phase
Sampled systems
title Generalized predictor based active disturbance rejection control for non-minimum phase systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T13%3A51%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Generalized%20predictor%20based%20active%20disturbance%20rejection%20control%20for%20non-minimum%20phase%20systems&rft.jtitle=ISA%20transactions&rft.au=Geng,%20Xinpeng&rft.date=2019-04&rft.volume=87&rft.spage=34&rft.epage=45&rft.pages=34-45&rft.issn=0019-0578&rft.eissn=1879-2022&rft_id=info:doi/10.1016/j.isatra.2018.11.002&rft_dat=%3Cproquest_cross%3E2149032270%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2149032270&rft_id=info:pmid/30503271&rft_els_id=S0019057818304282&rfr_iscdi=true