Probing Atomic Distributions in Mono- and Bimetallic Nanoparticles by Supervised Machine Learning
Properties of mono- and bimetallic metal nanoparticles (NPs) may depend strongly on their compositional, structural (or geometrical) attributes, and their atomic dynamics, all of which can be efficiently described by a partial radial distribution function (PRDF) of metal atoms. For NPs that are seve...
Gespeichert in:
Veröffentlicht in: | Nano letters 2019-01, Vol.19 (1), p.520-529 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 529 |
---|---|
container_issue | 1 |
container_start_page | 520 |
container_title | Nano letters |
container_volume | 19 |
creator | Timoshenko, Janis Wrasman, Cody J Luneau, Mathilde Shirman, Tanya Cargnello, Matteo Bare, Simon R Aizenberg, Joanna Friend, Cynthia M Frenkel, Anatoly I |
description | Properties of mono- and bimetallic metal nanoparticles (NPs) may depend strongly on their compositional, structural (or geometrical) attributes, and their atomic dynamics, all of which can be efficiently described by a partial radial distribution function (PRDF) of metal atoms. For NPs that are several nanometers in size, finite size effects may play a role in determining crystalline order, interatomic distances, and particle shape. Bimetallic NPs may also have different compositional distributions than bulk materials. These factors all render the determination of PRDFs challenging. Here extended X-ray absorption fine structure (EXAFS) spectroscopy, molecular dynamics simulations, and supervised machine learning (artificial neural-network) method are combined to extract PRDFs directly from experimental data. By applying this method to several systems of Pt and PdAu NPs, we demonstrate the finite size effects on the nearest neighbor distributions, bond dynamics, and alloying motifs in mono- and bimetallic particles and establish the generality of this approach. |
doi_str_mv | 10.1021/acs.nanolett.8b04461 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2149031001</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2149031001</sourcerecordid><originalsourceid>FETCH-LOGICAL-a460t-c3021f5ce979190bf2b4fb4f49559611171e16cc72832dd5036f148a5af316893</originalsourceid><addsrcrecordid>eNp9kMtKxDAUhoMo3t9AJEs3Hc9p0k6z9K4wXkBdlzRNNdImY5IK8_ZmmBmXQuBk8f3_4XyEnCBMEHI8lypMrLSu1zFOqgY4L3GL7GPBICuFyLf__hXfIwchfAGAYAXskj0GBSCKcp_IF-8aYz_oRXSDUfTahOhNM0bjbKDG0kdnXUalbemlGXSUfZ-op7R3Ln00qteBNgv6Os61_zFBt_RRqk9jNZ1p6W1qPiI7neyDPl7PQ_J-e_N2dZ_Nnu8eri5mmeQlxEyxdFRXKC2mAgU0Xd7wLj0uikKUiDhFjaVS07xiedsWwMoOeSUL2TEsK8EOydmqd-7d96hDrAcTlO57abUbQ50jF8AQABPKV6jyLgSvu3ruzSD9okaol3LrJLfeyK3XclPsdL1hbAbd_oU2NhMAK2AZ_3Kjt-ng_zt_AUfKiTw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2149031001</pqid></control><display><type>article</type><title>Probing Atomic Distributions in Mono- and Bimetallic Nanoparticles by Supervised Machine Learning</title><source>ACS Publications</source><creator>Timoshenko, Janis ; Wrasman, Cody J ; Luneau, Mathilde ; Shirman, Tanya ; Cargnello, Matteo ; Bare, Simon R ; Aizenberg, Joanna ; Friend, Cynthia M ; Frenkel, Anatoly I</creator><creatorcontrib>Timoshenko, Janis ; Wrasman, Cody J ; Luneau, Mathilde ; Shirman, Tanya ; Cargnello, Matteo ; Bare, Simon R ; Aizenberg, Joanna ; Friend, Cynthia M ; Frenkel, Anatoly I</creatorcontrib><description>Properties of mono- and bimetallic metal nanoparticles (NPs) may depend strongly on their compositional, structural (or geometrical) attributes, and their atomic dynamics, all of which can be efficiently described by a partial radial distribution function (PRDF) of metal atoms. For NPs that are several nanometers in size, finite size effects may play a role in determining crystalline order, interatomic distances, and particle shape. Bimetallic NPs may also have different compositional distributions than bulk materials. These factors all render the determination of PRDFs challenging. Here extended X-ray absorption fine structure (EXAFS) spectroscopy, molecular dynamics simulations, and supervised machine learning (artificial neural-network) method are combined to extract PRDFs directly from experimental data. By applying this method to several systems of Pt and PdAu NPs, we demonstrate the finite size effects on the nearest neighbor distributions, bond dynamics, and alloying motifs in mono- and bimetallic particles and establish the generality of this approach.</description><identifier>ISSN: 1530-6984</identifier><identifier>EISSN: 1530-6992</identifier><identifier>DOI: 10.1021/acs.nanolett.8b04461</identifier><identifier>PMID: 30501196</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>Nano letters, 2019-01, Vol.19 (1), p.520-529</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a460t-c3021f5ce979190bf2b4fb4f49559611171e16cc72832dd5036f148a5af316893</citedby><cites>FETCH-LOGICAL-a460t-c3021f5ce979190bf2b4fb4f49559611171e16cc72832dd5036f148a5af316893</cites><orcidid>0000-0002-4932-0342 ; 0000-0002-8673-9046 ; 0000-0002-5451-1207 ; 0000-0002-7344-9031</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.nanolett.8b04461$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.nanolett.8b04461$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30501196$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Timoshenko, Janis</creatorcontrib><creatorcontrib>Wrasman, Cody J</creatorcontrib><creatorcontrib>Luneau, Mathilde</creatorcontrib><creatorcontrib>Shirman, Tanya</creatorcontrib><creatorcontrib>Cargnello, Matteo</creatorcontrib><creatorcontrib>Bare, Simon R</creatorcontrib><creatorcontrib>Aizenberg, Joanna</creatorcontrib><creatorcontrib>Friend, Cynthia M</creatorcontrib><creatorcontrib>Frenkel, Anatoly I</creatorcontrib><title>Probing Atomic Distributions in Mono- and Bimetallic Nanoparticles by Supervised Machine Learning</title><title>Nano letters</title><addtitle>Nano Lett</addtitle><description>Properties of mono- and bimetallic metal nanoparticles (NPs) may depend strongly on their compositional, structural (or geometrical) attributes, and their atomic dynamics, all of which can be efficiently described by a partial radial distribution function (PRDF) of metal atoms. For NPs that are several nanometers in size, finite size effects may play a role in determining crystalline order, interatomic distances, and particle shape. Bimetallic NPs may also have different compositional distributions than bulk materials. These factors all render the determination of PRDFs challenging. Here extended X-ray absorption fine structure (EXAFS) spectroscopy, molecular dynamics simulations, and supervised machine learning (artificial neural-network) method are combined to extract PRDFs directly from experimental data. By applying this method to several systems of Pt and PdAu NPs, we demonstrate the finite size effects on the nearest neighbor distributions, bond dynamics, and alloying motifs in mono- and bimetallic particles and establish the generality of this approach.</description><issn>1530-6984</issn><issn>1530-6992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKxDAUhoMo3t9AJEs3Hc9p0k6z9K4wXkBdlzRNNdImY5IK8_ZmmBmXQuBk8f3_4XyEnCBMEHI8lypMrLSu1zFOqgY4L3GL7GPBICuFyLf__hXfIwchfAGAYAXskj0GBSCKcp_IF-8aYz_oRXSDUfTahOhNM0bjbKDG0kdnXUalbemlGXSUfZ-op7R3Ln00qteBNgv6Os61_zFBt_RRqk9jNZ1p6W1qPiI7neyDPl7PQ_J-e_N2dZ_Nnu8eri5mmeQlxEyxdFRXKC2mAgU0Xd7wLj0uikKUiDhFjaVS07xiedsWwMoOeSUL2TEsK8EOydmqd-7d96hDrAcTlO57abUbQ50jF8AQABPKV6jyLgSvu3ruzSD9okaol3LrJLfeyK3XclPsdL1hbAbd_oU2NhMAK2AZ_3Kjt-ng_zt_AUfKiTw</recordid><startdate>20190109</startdate><enddate>20190109</enddate><creator>Timoshenko, Janis</creator><creator>Wrasman, Cody J</creator><creator>Luneau, Mathilde</creator><creator>Shirman, Tanya</creator><creator>Cargnello, Matteo</creator><creator>Bare, Simon R</creator><creator>Aizenberg, Joanna</creator><creator>Friend, Cynthia M</creator><creator>Frenkel, Anatoly I</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4932-0342</orcidid><orcidid>https://orcid.org/0000-0002-8673-9046</orcidid><orcidid>https://orcid.org/0000-0002-5451-1207</orcidid><orcidid>https://orcid.org/0000-0002-7344-9031</orcidid></search><sort><creationdate>20190109</creationdate><title>Probing Atomic Distributions in Mono- and Bimetallic Nanoparticles by Supervised Machine Learning</title><author>Timoshenko, Janis ; Wrasman, Cody J ; Luneau, Mathilde ; Shirman, Tanya ; Cargnello, Matteo ; Bare, Simon R ; Aizenberg, Joanna ; Friend, Cynthia M ; Frenkel, Anatoly I</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a460t-c3021f5ce979190bf2b4fb4f49559611171e16cc72832dd5036f148a5af316893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Timoshenko, Janis</creatorcontrib><creatorcontrib>Wrasman, Cody J</creatorcontrib><creatorcontrib>Luneau, Mathilde</creatorcontrib><creatorcontrib>Shirman, Tanya</creatorcontrib><creatorcontrib>Cargnello, Matteo</creatorcontrib><creatorcontrib>Bare, Simon R</creatorcontrib><creatorcontrib>Aizenberg, Joanna</creatorcontrib><creatorcontrib>Friend, Cynthia M</creatorcontrib><creatorcontrib>Frenkel, Anatoly I</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Nano letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Timoshenko, Janis</au><au>Wrasman, Cody J</au><au>Luneau, Mathilde</au><au>Shirman, Tanya</au><au>Cargnello, Matteo</au><au>Bare, Simon R</au><au>Aizenberg, Joanna</au><au>Friend, Cynthia M</au><au>Frenkel, Anatoly I</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Probing Atomic Distributions in Mono- and Bimetallic Nanoparticles by Supervised Machine Learning</atitle><jtitle>Nano letters</jtitle><addtitle>Nano Lett</addtitle><date>2019-01-09</date><risdate>2019</risdate><volume>19</volume><issue>1</issue><spage>520</spage><epage>529</epage><pages>520-529</pages><issn>1530-6984</issn><eissn>1530-6992</eissn><abstract>Properties of mono- and bimetallic metal nanoparticles (NPs) may depend strongly on their compositional, structural (or geometrical) attributes, and their atomic dynamics, all of which can be efficiently described by a partial radial distribution function (PRDF) of metal atoms. For NPs that are several nanometers in size, finite size effects may play a role in determining crystalline order, interatomic distances, and particle shape. Bimetallic NPs may also have different compositional distributions than bulk materials. These factors all render the determination of PRDFs challenging. Here extended X-ray absorption fine structure (EXAFS) spectroscopy, molecular dynamics simulations, and supervised machine learning (artificial neural-network) method are combined to extract PRDFs directly from experimental data. By applying this method to several systems of Pt and PdAu NPs, we demonstrate the finite size effects on the nearest neighbor distributions, bond dynamics, and alloying motifs in mono- and bimetallic particles and establish the generality of this approach.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>30501196</pmid><doi>10.1021/acs.nanolett.8b04461</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-4932-0342</orcidid><orcidid>https://orcid.org/0000-0002-8673-9046</orcidid><orcidid>https://orcid.org/0000-0002-5451-1207</orcidid><orcidid>https://orcid.org/0000-0002-7344-9031</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1530-6984 |
ispartof | Nano letters, 2019-01, Vol.19 (1), p.520-529 |
issn | 1530-6984 1530-6992 |
language | eng |
recordid | cdi_proquest_miscellaneous_2149031001 |
source | ACS Publications |
title | Probing Atomic Distributions in Mono- and Bimetallic Nanoparticles by Supervised Machine Learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T00%3A25%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Probing%20Atomic%20Distributions%20in%20Mono-%20and%20Bimetallic%20Nanoparticles%20by%20Supervised%20Machine%20Learning&rft.jtitle=Nano%20letters&rft.au=Timoshenko,%20Janis&rft.date=2019-01-09&rft.volume=19&rft.issue=1&rft.spage=520&rft.epage=529&rft.pages=520-529&rft.issn=1530-6984&rft.eissn=1530-6992&rft_id=info:doi/10.1021/acs.nanolett.8b04461&rft_dat=%3Cproquest_cross%3E2149031001%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2149031001&rft_id=info:pmid/30501196&rfr_iscdi=true |