Probing Atomic Distributions in Mono- and Bimetallic Nanoparticles by Supervised Machine Learning

Properties of mono- and bimetallic metal nanoparticles (NPs) may depend strongly on their compositional, structural (or geometrical) attributes, and their atomic dynamics, all of which can be efficiently described by a partial radial distribution function (PRDF) of metal atoms. For NPs that are seve...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nano letters 2019-01, Vol.19 (1), p.520-529
Hauptverfasser: Timoshenko, Janis, Wrasman, Cody J, Luneau, Mathilde, Shirman, Tanya, Cargnello, Matteo, Bare, Simon R, Aizenberg, Joanna, Friend, Cynthia M, Frenkel, Anatoly I
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 529
container_issue 1
container_start_page 520
container_title Nano letters
container_volume 19
creator Timoshenko, Janis
Wrasman, Cody J
Luneau, Mathilde
Shirman, Tanya
Cargnello, Matteo
Bare, Simon R
Aizenberg, Joanna
Friend, Cynthia M
Frenkel, Anatoly I
description Properties of mono- and bimetallic metal nanoparticles (NPs) may depend strongly on their compositional, structural (or geometrical) attributes, and their atomic dynamics, all of which can be efficiently described by a partial radial distribution function (PRDF) of metal atoms. For NPs that are several nanometers in size, finite size effects may play a role in determining crystalline order, interatomic distances, and particle shape. Bimetallic NPs may also have different compositional distributions than bulk materials. These factors all render the determination of PRDFs challenging. Here extended X-ray absorption fine structure (EXAFS) spectroscopy, molecular dynamics simulations, and supervised machine learning (artificial neural-network) method are combined to extract PRDFs directly from experimental data. By applying this method to several systems of Pt and PdAu NPs, we demonstrate the finite size effects on the nearest neighbor distributions, bond dynamics, and alloying motifs in mono- and bimetallic particles and establish the generality of this approach.
doi_str_mv 10.1021/acs.nanolett.8b04461
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2149031001</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2149031001</sourcerecordid><originalsourceid>FETCH-LOGICAL-a460t-c3021f5ce979190bf2b4fb4f49559611171e16cc72832dd5036f148a5af316893</originalsourceid><addsrcrecordid>eNp9kMtKxDAUhoMo3t9AJEs3Hc9p0k6z9K4wXkBdlzRNNdImY5IK8_ZmmBmXQuBk8f3_4XyEnCBMEHI8lypMrLSu1zFOqgY4L3GL7GPBICuFyLf__hXfIwchfAGAYAXskj0GBSCKcp_IF-8aYz_oRXSDUfTahOhNM0bjbKDG0kdnXUalbemlGXSUfZ-op7R3Ln00qteBNgv6Os61_zFBt_RRqk9jNZ1p6W1qPiI7neyDPl7PQ_J-e_N2dZ_Nnu8eri5mmeQlxEyxdFRXKC2mAgU0Xd7wLj0uikKUiDhFjaVS07xiedsWwMoOeSUL2TEsK8EOydmqd-7d96hDrAcTlO57abUbQ50jF8AQABPKV6jyLgSvu3ruzSD9okaol3LrJLfeyK3XclPsdL1hbAbd_oU2NhMAK2AZ_3Kjt-ng_zt_AUfKiTw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2149031001</pqid></control><display><type>article</type><title>Probing Atomic Distributions in Mono- and Bimetallic Nanoparticles by Supervised Machine Learning</title><source>ACS Publications</source><creator>Timoshenko, Janis ; Wrasman, Cody J ; Luneau, Mathilde ; Shirman, Tanya ; Cargnello, Matteo ; Bare, Simon R ; Aizenberg, Joanna ; Friend, Cynthia M ; Frenkel, Anatoly I</creator><creatorcontrib>Timoshenko, Janis ; Wrasman, Cody J ; Luneau, Mathilde ; Shirman, Tanya ; Cargnello, Matteo ; Bare, Simon R ; Aizenberg, Joanna ; Friend, Cynthia M ; Frenkel, Anatoly I</creatorcontrib><description>Properties of mono- and bimetallic metal nanoparticles (NPs) may depend strongly on their compositional, structural (or geometrical) attributes, and their atomic dynamics, all of which can be efficiently described by a partial radial distribution function (PRDF) of metal atoms. For NPs that are several nanometers in size, finite size effects may play a role in determining crystalline order, interatomic distances, and particle shape. Bimetallic NPs may also have different compositional distributions than bulk materials. These factors all render the determination of PRDFs challenging. Here extended X-ray absorption fine structure (EXAFS) spectroscopy, molecular dynamics simulations, and supervised machine learning (artificial neural-network) method are combined to extract PRDFs directly from experimental data. By applying this method to several systems of Pt and PdAu NPs, we demonstrate the finite size effects on the nearest neighbor distributions, bond dynamics, and alloying motifs in mono- and bimetallic particles and establish the generality of this approach.</description><identifier>ISSN: 1530-6984</identifier><identifier>EISSN: 1530-6992</identifier><identifier>DOI: 10.1021/acs.nanolett.8b04461</identifier><identifier>PMID: 30501196</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>Nano letters, 2019-01, Vol.19 (1), p.520-529</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a460t-c3021f5ce979190bf2b4fb4f49559611171e16cc72832dd5036f148a5af316893</citedby><cites>FETCH-LOGICAL-a460t-c3021f5ce979190bf2b4fb4f49559611171e16cc72832dd5036f148a5af316893</cites><orcidid>0000-0002-4932-0342 ; 0000-0002-8673-9046 ; 0000-0002-5451-1207 ; 0000-0002-7344-9031</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.nanolett.8b04461$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.nanolett.8b04461$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30501196$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Timoshenko, Janis</creatorcontrib><creatorcontrib>Wrasman, Cody J</creatorcontrib><creatorcontrib>Luneau, Mathilde</creatorcontrib><creatorcontrib>Shirman, Tanya</creatorcontrib><creatorcontrib>Cargnello, Matteo</creatorcontrib><creatorcontrib>Bare, Simon R</creatorcontrib><creatorcontrib>Aizenberg, Joanna</creatorcontrib><creatorcontrib>Friend, Cynthia M</creatorcontrib><creatorcontrib>Frenkel, Anatoly I</creatorcontrib><title>Probing Atomic Distributions in Mono- and Bimetallic Nanoparticles by Supervised Machine Learning</title><title>Nano letters</title><addtitle>Nano Lett</addtitle><description>Properties of mono- and bimetallic metal nanoparticles (NPs) may depend strongly on their compositional, structural (or geometrical) attributes, and their atomic dynamics, all of which can be efficiently described by a partial radial distribution function (PRDF) of metal atoms. For NPs that are several nanometers in size, finite size effects may play a role in determining crystalline order, interatomic distances, and particle shape. Bimetallic NPs may also have different compositional distributions than bulk materials. These factors all render the determination of PRDFs challenging. Here extended X-ray absorption fine structure (EXAFS) spectroscopy, molecular dynamics simulations, and supervised machine learning (artificial neural-network) method are combined to extract PRDFs directly from experimental data. By applying this method to several systems of Pt and PdAu NPs, we demonstrate the finite size effects on the nearest neighbor distributions, bond dynamics, and alloying motifs in mono- and bimetallic particles and establish the generality of this approach.</description><issn>1530-6984</issn><issn>1530-6992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKxDAUhoMo3t9AJEs3Hc9p0k6z9K4wXkBdlzRNNdImY5IK8_ZmmBmXQuBk8f3_4XyEnCBMEHI8lypMrLSu1zFOqgY4L3GL7GPBICuFyLf__hXfIwchfAGAYAXskj0GBSCKcp_IF-8aYz_oRXSDUfTahOhNM0bjbKDG0kdnXUalbemlGXSUfZ-op7R3Ln00qteBNgv6Os61_zFBt_RRqk9jNZ1p6W1qPiI7neyDPl7PQ_J-e_N2dZ_Nnu8eri5mmeQlxEyxdFRXKC2mAgU0Xd7wLj0uikKUiDhFjaVS07xiedsWwMoOeSUL2TEsK8EOydmqd-7d96hDrAcTlO57abUbQ50jF8AQABPKV6jyLgSvu3ruzSD9okaol3LrJLfeyK3XclPsdL1hbAbd_oU2NhMAK2AZ_3Kjt-ng_zt_AUfKiTw</recordid><startdate>20190109</startdate><enddate>20190109</enddate><creator>Timoshenko, Janis</creator><creator>Wrasman, Cody J</creator><creator>Luneau, Mathilde</creator><creator>Shirman, Tanya</creator><creator>Cargnello, Matteo</creator><creator>Bare, Simon R</creator><creator>Aizenberg, Joanna</creator><creator>Friend, Cynthia M</creator><creator>Frenkel, Anatoly I</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4932-0342</orcidid><orcidid>https://orcid.org/0000-0002-8673-9046</orcidid><orcidid>https://orcid.org/0000-0002-5451-1207</orcidid><orcidid>https://orcid.org/0000-0002-7344-9031</orcidid></search><sort><creationdate>20190109</creationdate><title>Probing Atomic Distributions in Mono- and Bimetallic Nanoparticles by Supervised Machine Learning</title><author>Timoshenko, Janis ; Wrasman, Cody J ; Luneau, Mathilde ; Shirman, Tanya ; Cargnello, Matteo ; Bare, Simon R ; Aizenberg, Joanna ; Friend, Cynthia M ; Frenkel, Anatoly I</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a460t-c3021f5ce979190bf2b4fb4f49559611171e16cc72832dd5036f148a5af316893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Timoshenko, Janis</creatorcontrib><creatorcontrib>Wrasman, Cody J</creatorcontrib><creatorcontrib>Luneau, Mathilde</creatorcontrib><creatorcontrib>Shirman, Tanya</creatorcontrib><creatorcontrib>Cargnello, Matteo</creatorcontrib><creatorcontrib>Bare, Simon R</creatorcontrib><creatorcontrib>Aizenberg, Joanna</creatorcontrib><creatorcontrib>Friend, Cynthia M</creatorcontrib><creatorcontrib>Frenkel, Anatoly I</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Nano letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Timoshenko, Janis</au><au>Wrasman, Cody J</au><au>Luneau, Mathilde</au><au>Shirman, Tanya</au><au>Cargnello, Matteo</au><au>Bare, Simon R</au><au>Aizenberg, Joanna</au><au>Friend, Cynthia M</au><au>Frenkel, Anatoly I</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Probing Atomic Distributions in Mono- and Bimetallic Nanoparticles by Supervised Machine Learning</atitle><jtitle>Nano letters</jtitle><addtitle>Nano Lett</addtitle><date>2019-01-09</date><risdate>2019</risdate><volume>19</volume><issue>1</issue><spage>520</spage><epage>529</epage><pages>520-529</pages><issn>1530-6984</issn><eissn>1530-6992</eissn><abstract>Properties of mono- and bimetallic metal nanoparticles (NPs) may depend strongly on their compositional, structural (or geometrical) attributes, and their atomic dynamics, all of which can be efficiently described by a partial radial distribution function (PRDF) of metal atoms. For NPs that are several nanometers in size, finite size effects may play a role in determining crystalline order, interatomic distances, and particle shape. Bimetallic NPs may also have different compositional distributions than bulk materials. These factors all render the determination of PRDFs challenging. Here extended X-ray absorption fine structure (EXAFS) spectroscopy, molecular dynamics simulations, and supervised machine learning (artificial neural-network) method are combined to extract PRDFs directly from experimental data. By applying this method to several systems of Pt and PdAu NPs, we demonstrate the finite size effects on the nearest neighbor distributions, bond dynamics, and alloying motifs in mono- and bimetallic particles and establish the generality of this approach.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>30501196</pmid><doi>10.1021/acs.nanolett.8b04461</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-4932-0342</orcidid><orcidid>https://orcid.org/0000-0002-8673-9046</orcidid><orcidid>https://orcid.org/0000-0002-5451-1207</orcidid><orcidid>https://orcid.org/0000-0002-7344-9031</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1530-6984
ispartof Nano letters, 2019-01, Vol.19 (1), p.520-529
issn 1530-6984
1530-6992
language eng
recordid cdi_proquest_miscellaneous_2149031001
source ACS Publications
title Probing Atomic Distributions in Mono- and Bimetallic Nanoparticles by Supervised Machine Learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T00%3A25%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Probing%20Atomic%20Distributions%20in%20Mono-%20and%20Bimetallic%20Nanoparticles%20by%20Supervised%20Machine%20Learning&rft.jtitle=Nano%20letters&rft.au=Timoshenko,%20Janis&rft.date=2019-01-09&rft.volume=19&rft.issue=1&rft.spage=520&rft.epage=529&rft.pages=520-529&rft.issn=1530-6984&rft.eissn=1530-6992&rft_id=info:doi/10.1021/acs.nanolett.8b04461&rft_dat=%3Cproquest_cross%3E2149031001%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2149031001&rft_id=info:pmid/30501196&rfr_iscdi=true