Global exponential stability in continuous-time and discrete-time delayed bidirectional neural networks
Convergence dynamics of continuous-time bidirectional neural networks with constant transmission delays are studied. Without assuming the symmetry of synaptic connection weights and the monotonicity and differentiability of activation functions, Lyapunov functionals and Halanay-type inequalities are...
Gespeichert in:
Veröffentlicht in: | Physica. D 2001-11, Vol.159 (3), p.233-251 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 251 |
---|---|
container_issue | 3 |
container_start_page | 233 |
container_title | Physica. D |
container_volume | 159 |
creator | Mohamad, Sannay |
description | Convergence dynamics of continuous-time bidirectional neural networks with constant transmission delays are studied. Without assuming the symmetry of synaptic connection weights and the monotonicity and differentiability of activation functions, Lyapunov functionals and Halanay-type inequalities are constructed and employed to derive delay independent sufficient conditions under which the continuous-time networks converge exponentially to the equilibria associated with temporally uniform external inputs to the networks. Discrete-time analogues of the continuous-time networks are formulated and we study their dynamical characteristics. It is shown that the convergence dynamics of the continuous-time networks are preserved by the discrete-time analogues without any restriction on the discretization step-size. Several examples are given to illustrate the advantages of the discrete-time analogues in numerically simulating the continuous-time networks. |
doi_str_mv | 10.1016/S0167-2789(01)00344-X |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_21489362</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S016727890100344X</els_id><sourcerecordid>589297</sourcerecordid><originalsourceid>FETCH-LOGICAL-c338t-52a8b1c3ae4aa91dd63eb5967a10aa949c34fc378a00de7da74418fe6628e7283</originalsourceid><addsrcrecordid>eNqFUE1LAzEUDKJgrf4EYU-ih9V8bDfZk0jRKhQ8qNBbyCZvJbpNapKq_femXfHq5c1jmDe8GYROCb4kmNRXT3nwknLRnGNygTGrqnKxh0ZEcFoKTOk-Gv1JDtFRjG8YY8IZH6HXWe9b1RfwvfIOXLJ5j0m1trdpU1hXaJ9Jt_brWCa7hEI5UxgbdYAEA2OgVxswRWuNDaCT9S6bOFiHHaQvH97jMTroVB_h5BfH6OXu9nl6X84fZw_Tm3mpGROpnFAlWqKZgkqphhhTM2gnTc0VwZmoGs2qTjMuFMYGuFG8qojooK6pAE4FG6OzwXcV_McaYpLL_Cz0vXKQM0hKKtGwmmbhZBDq4GMM0MlVsEsVNpJgua1V7mqV284kJnJXq1zku-vhDnKKTwtBRm3BaRjCS-PtPw4_mhaCRg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>21489362</pqid></control><display><type>article</type><title>Global exponential stability in continuous-time and discrete-time delayed bidirectional neural networks</title><source>ScienceDirect Freedom Collection (Elsevier)</source><creator>Mohamad, Sannay</creator><creatorcontrib>Mohamad, Sannay</creatorcontrib><description>Convergence dynamics of continuous-time bidirectional neural networks with constant transmission delays are studied. Without assuming the symmetry of synaptic connection weights and the monotonicity and differentiability of activation functions, Lyapunov functionals and Halanay-type inequalities are constructed and employed to derive delay independent sufficient conditions under which the continuous-time networks converge exponentially to the equilibria associated with temporally uniform external inputs to the networks. Discrete-time analogues of the continuous-time networks are formulated and we study their dynamical characteristics. It is shown that the convergence dynamics of the continuous-time networks are preserved by the discrete-time analogues without any restriction on the discretization step-size. Several examples are given to illustrate the advantages of the discrete-time analogues in numerically simulating the continuous-time networks.</description><identifier>ISSN: 0167-2789</identifier><identifier>EISSN: 1872-8022</identifier><identifier>DOI: 10.1016/S0167-2789(01)00344-X</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Algorithms ; Bidirectional neural networks ; Computer simulation ; Convergence of numerical methods ; Discrete-time analogues ; Global exponential stability ; Halanay-type inequalities ; Lyapunov functionals ; Lyapunov methods ; Transmission delays</subject><ispartof>Physica. D, 2001-11, Vol.159 (3), p.233-251</ispartof><rights>2001 Elsevier Science B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c338t-52a8b1c3ae4aa91dd63eb5967a10aa949c34fc378a00de7da74418fe6628e7283</citedby><cites>FETCH-LOGICAL-c338t-52a8b1c3ae4aa91dd63eb5967a10aa949c34fc378a00de7da74418fe6628e7283</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0167-2789(01)00344-X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27923,27924,45994</link.rule.ids></links><search><creatorcontrib>Mohamad, Sannay</creatorcontrib><title>Global exponential stability in continuous-time and discrete-time delayed bidirectional neural networks</title><title>Physica. D</title><description>Convergence dynamics of continuous-time bidirectional neural networks with constant transmission delays are studied. Without assuming the symmetry of synaptic connection weights and the monotonicity and differentiability of activation functions, Lyapunov functionals and Halanay-type inequalities are constructed and employed to derive delay independent sufficient conditions under which the continuous-time networks converge exponentially to the equilibria associated with temporally uniform external inputs to the networks. Discrete-time analogues of the continuous-time networks are formulated and we study their dynamical characteristics. It is shown that the convergence dynamics of the continuous-time networks are preserved by the discrete-time analogues without any restriction on the discretization step-size. Several examples are given to illustrate the advantages of the discrete-time analogues in numerically simulating the continuous-time networks.</description><subject>Algorithms</subject><subject>Bidirectional neural networks</subject><subject>Computer simulation</subject><subject>Convergence of numerical methods</subject><subject>Discrete-time analogues</subject><subject>Global exponential stability</subject><subject>Halanay-type inequalities</subject><subject>Lyapunov functionals</subject><subject>Lyapunov methods</subject><subject>Transmission delays</subject><issn>0167-2789</issn><issn>1872-8022</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><recordid>eNqFUE1LAzEUDKJgrf4EYU-ih9V8bDfZk0jRKhQ8qNBbyCZvJbpNapKq_femXfHq5c1jmDe8GYROCb4kmNRXT3nwknLRnGNygTGrqnKxh0ZEcFoKTOk-Gv1JDtFRjG8YY8IZH6HXWe9b1RfwvfIOXLJ5j0m1trdpU1hXaJ9Jt_brWCa7hEI5UxgbdYAEA2OgVxswRWuNDaCT9S6bOFiHHaQvH97jMTroVB_h5BfH6OXu9nl6X84fZw_Tm3mpGROpnFAlWqKZgkqphhhTM2gnTc0VwZmoGs2qTjMuFMYGuFG8qojooK6pAE4FG6OzwXcV_McaYpLL_Cz0vXKQM0hKKtGwmmbhZBDq4GMM0MlVsEsVNpJgua1V7mqV284kJnJXq1zku-vhDnKKTwtBRm3BaRjCS-PtPw4_mhaCRg</recordid><startdate>20011115</startdate><enddate>20011115</enddate><creator>Mohamad, Sannay</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20011115</creationdate><title>Global exponential stability in continuous-time and discrete-time delayed bidirectional neural networks</title><author>Mohamad, Sannay</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c338t-52a8b1c3ae4aa91dd63eb5967a10aa949c34fc378a00de7da74418fe6628e7283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Algorithms</topic><topic>Bidirectional neural networks</topic><topic>Computer simulation</topic><topic>Convergence of numerical methods</topic><topic>Discrete-time analogues</topic><topic>Global exponential stability</topic><topic>Halanay-type inequalities</topic><topic>Lyapunov functionals</topic><topic>Lyapunov methods</topic><topic>Transmission delays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mohamad, Sannay</creatorcontrib><collection>CrossRef</collection><jtitle>Physica. D</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mohamad, Sannay</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Global exponential stability in continuous-time and discrete-time delayed bidirectional neural networks</atitle><jtitle>Physica. D</jtitle><date>2001-11-15</date><risdate>2001</risdate><volume>159</volume><issue>3</issue><spage>233</spage><epage>251</epage><pages>233-251</pages><issn>0167-2789</issn><eissn>1872-8022</eissn><abstract>Convergence dynamics of continuous-time bidirectional neural networks with constant transmission delays are studied. Without assuming the symmetry of synaptic connection weights and the monotonicity and differentiability of activation functions, Lyapunov functionals and Halanay-type inequalities are constructed and employed to derive delay independent sufficient conditions under which the continuous-time networks converge exponentially to the equilibria associated with temporally uniform external inputs to the networks. Discrete-time analogues of the continuous-time networks are formulated and we study their dynamical characteristics. It is shown that the convergence dynamics of the continuous-time networks are preserved by the discrete-time analogues without any restriction on the discretization step-size. Several examples are given to illustrate the advantages of the discrete-time analogues in numerically simulating the continuous-time networks.</abstract><pub>Elsevier B.V</pub><doi>10.1016/S0167-2789(01)00344-X</doi><tpages>19</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0167-2789 |
ispartof | Physica. D, 2001-11, Vol.159 (3), p.233-251 |
issn | 0167-2789 1872-8022 |
language | eng |
recordid | cdi_proquest_miscellaneous_21489362 |
source | ScienceDirect Freedom Collection (Elsevier) |
subjects | Algorithms Bidirectional neural networks Computer simulation Convergence of numerical methods Discrete-time analogues Global exponential stability Halanay-type inequalities Lyapunov functionals Lyapunov methods Transmission delays |
title | Global exponential stability in continuous-time and discrete-time delayed bidirectional neural networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T17%3A35%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Global%20exponential%20stability%20in%20continuous-time%20and%20discrete-time%20delayed%20bidirectional%20neural%20networks&rft.jtitle=Physica.%20D&rft.au=Mohamad,%20Sannay&rft.date=2001-11-15&rft.volume=159&rft.issue=3&rft.spage=233&rft.epage=251&rft.pages=233-251&rft.issn=0167-2789&rft.eissn=1872-8022&rft_id=info:doi/10.1016/S0167-2789(01)00344-X&rft_dat=%3Cproquest_cross%3E589297%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=21489362&rft_id=info:pmid/&rft_els_id=S016727890100344X&rfr_iscdi=true |