Energy Metabolism Response to Low-Temperature and Frozen Conditions in Psychrobacter cryohalolentis

Studies of cold-active enzymes have provided basic information on the molecular and biochemical properties of psychrophiles; however, the physiological strategies that compensate for low-temperature metabolism remain poorly understood. We investigated the cellular pools of ATP and ADP in Psychrobact...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied and Environmental Microbiology 2009-02, Vol.75 (3), p.711-718
Hauptverfasser: Amato, Pierre, Christner, Brent C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 718
container_issue 3
container_start_page 711
container_title Applied and Environmental Microbiology
container_volume 75
creator Amato, Pierre
Christner, Brent C
description Studies of cold-active enzymes have provided basic information on the molecular and biochemical properties of psychrophiles; however, the physiological strategies that compensate for low-temperature metabolism remain poorly understood. We investigated the cellular pools of ATP and ADP in Psychrobacter cryohalolentis K5 incubated at eight temperatures between 22°C and -80°C. Cellular ATP and ADP concentrations increased with decreasing temperature, and the most significant increases were observed in cells that were incubated as frozen suspensions (
doi_str_mv 10.1128/AEM.02193-08
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_21485441</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>21485441</sourcerecordid><originalsourceid>FETCH-LOGICAL-c593t-faaa8405612f65ee3ecff6ebfacc0d91c37cf994758d36f7c174c6fdaf1ae32c3</originalsourceid><addsrcrecordid>eNqF0k1v1DAQBuAIgWgp3DhDhAQnUsYfceILUrXaAtJWIGjP1qwz3nWVxIudpVp-PS67Kh-Xnnzwo9ea8VsUzxmcMsbbd2fzi1PgTIsK2gfFMQPdVrUQ6mFxDKB1xbmEo-JJStcAIEG1j4sjpkEBU-K4sPOR4mpXXtCEy9D7NJRfKW3CmKicQrkIN9UlDRuKOG0jlTh25XkMP2ksZ2Hs_OSzLP1Yfkk7u45hiXaiWNq4C2vsQ0_j5NPT4pHDPtGzw3lSXJ3PL2cfq8XnD59mZ4vK1lpMlUPEVkKtGHeqJhJknVO0dGgtdJpZ0VintWzqthPKNZY10irXoWNIgltxUrzf5262y4E6mx-P2JtN9APGnQnozb83o1-bVfhhuBKccZ0D3hwCYvi-pTSZwSdLfY8jhW0ySrVSt1rdCzmTbS0luxdm1ygNTYav_oPXYRvHvC7DodaN0Fxk9HaPbAwpRXJ3szEwt2UwuQzmdxkMtJm_-Hsff_Dh9zN4fQCYLPYu4mh9unOcMQlaQnbl3q39an3jIxlMg0EaTFMbYRp2O-jLPXEYDK5ijrn6xoEJYHVbc6nEL47w0us</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>205973923</pqid></control><display><type>article</type><title>Energy Metabolism Response to Low-Temperature and Frozen Conditions in Psychrobacter cryohalolentis</title><source>American Society for Microbiology</source><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Amato, Pierre ; Christner, Brent C</creator><creatorcontrib>Amato, Pierre ; Christner, Brent C</creatorcontrib><description>Studies of cold-active enzymes have provided basic information on the molecular and biochemical properties of psychrophiles; however, the physiological strategies that compensate for low-temperature metabolism remain poorly understood. We investigated the cellular pools of ATP and ADP in Psychrobacter cryohalolentis K5 incubated at eight temperatures between 22°C and -80°C. Cellular ATP and ADP concentrations increased with decreasing temperature, and the most significant increases were observed in cells that were incubated as frozen suspensions (&lt;-5°C). Respiratory uncoupling significantly decreased this temperature-dependent response, indicating that the proton motive force was required for energy adaptation to frozen conditions. Since ATP and ADP are key substrates in metabolic and energy conservation reactions, increasing their concentrations may provide a strategy for offsetting the kinetic temperature effect, thereby maintaining reaction rates at low temperature. The adenylate levels increased significantly &lt;1 h after freezing and also when the cells were osmotically shocked to simulate the elevated solute concentrations encountered in the liquid fraction of the ice. Together, these data demonstrate that a substantial change in cellular energy metabolism is required for the cell to adapt to the low temperature and water activity conditions encountered during freezing. This physiological response may represent a critical biochemical compensation mechanism at low temperature, have relevance to cellular survival during freezing, and be important for the persistence of microorganisms in icy environments.</description><identifier>ISSN: 0099-2240</identifier><identifier>EISSN: 1098-5336</identifier><identifier>EISSN: 1098-6596</identifier><identifier>DOI: 10.1128/AEM.02193-08</identifier><identifier>PMID: 19060163</identifier><identifier>CODEN: AEMIDF</identifier><language>eng</language><publisher>Washington, DC: American Society for Microbiology</publisher><subject>Adaptation, Physiological ; Adenosine Diphosphate - metabolism ; Adenosine triphosphatase ; Adenosine Triphosphate - metabolism ; ATP ; Biochemistry ; Biological and medical sciences ; Cell Respiration ; Cold Temperature ; Energy Metabolism ; Enzymes ; Freezing ; Fundamental and applied biological sciences. Psychology ; Metabolism ; Microbiology ; Microorganisms ; Physiology and Biotechnology ; Proton-Motive Force ; Psychrobacter - physiology ; Psychrobacter cryohalolentis ; Studies</subject><ispartof>Applied and Environmental Microbiology, 2009-02, Vol.75 (3), p.711-718</ispartof><rights>2009 INIST-CNRS</rights><rights>Copyright American Society for Microbiology Feb 2009</rights><rights>Copyright © 2009, American Society for Microbiology</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c593t-faaa8405612f65ee3ecff6ebfacc0d91c37cf994758d36f7c174c6fdaf1ae32c3</citedby><cites>FETCH-LOGICAL-c593t-faaa8405612f65ee3ecff6ebfacc0d91c37cf994758d36f7c174c6fdaf1ae32c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2632129/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2632129/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,724,777,781,882,3175,3176,27905,27906,53772,53774</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21140940$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19060163$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Amato, Pierre</creatorcontrib><creatorcontrib>Christner, Brent C</creatorcontrib><title>Energy Metabolism Response to Low-Temperature and Frozen Conditions in Psychrobacter cryohalolentis</title><title>Applied and Environmental Microbiology</title><addtitle>Appl Environ Microbiol</addtitle><description>Studies of cold-active enzymes have provided basic information on the molecular and biochemical properties of psychrophiles; however, the physiological strategies that compensate for low-temperature metabolism remain poorly understood. We investigated the cellular pools of ATP and ADP in Psychrobacter cryohalolentis K5 incubated at eight temperatures between 22°C and -80°C. Cellular ATP and ADP concentrations increased with decreasing temperature, and the most significant increases were observed in cells that were incubated as frozen suspensions (&lt;-5°C). Respiratory uncoupling significantly decreased this temperature-dependent response, indicating that the proton motive force was required for energy adaptation to frozen conditions. Since ATP and ADP are key substrates in metabolic and energy conservation reactions, increasing their concentrations may provide a strategy for offsetting the kinetic temperature effect, thereby maintaining reaction rates at low temperature. The adenylate levels increased significantly &lt;1 h after freezing and also when the cells were osmotically shocked to simulate the elevated solute concentrations encountered in the liquid fraction of the ice. Together, these data demonstrate that a substantial change in cellular energy metabolism is required for the cell to adapt to the low temperature and water activity conditions encountered during freezing. This physiological response may represent a critical biochemical compensation mechanism at low temperature, have relevance to cellular survival during freezing, and be important for the persistence of microorganisms in icy environments.</description><subject>Adaptation, Physiological</subject><subject>Adenosine Diphosphate - metabolism</subject><subject>Adenosine triphosphatase</subject><subject>Adenosine Triphosphate - metabolism</subject><subject>ATP</subject><subject>Biochemistry</subject><subject>Biological and medical sciences</subject><subject>Cell Respiration</subject><subject>Cold Temperature</subject><subject>Energy Metabolism</subject><subject>Enzymes</subject><subject>Freezing</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Metabolism</subject><subject>Microbiology</subject><subject>Microorganisms</subject><subject>Physiology and Biotechnology</subject><subject>Proton-Motive Force</subject><subject>Psychrobacter - physiology</subject><subject>Psychrobacter cryohalolentis</subject><subject>Studies</subject><issn>0099-2240</issn><issn>1098-5336</issn><issn>1098-6596</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0k1v1DAQBuAIgWgp3DhDhAQnUsYfceILUrXaAtJWIGjP1qwz3nWVxIudpVp-PS67Kh-Xnnzwo9ea8VsUzxmcMsbbd2fzi1PgTIsK2gfFMQPdVrUQ6mFxDKB1xbmEo-JJStcAIEG1j4sjpkEBU-K4sPOR4mpXXtCEy9D7NJRfKW3CmKicQrkIN9UlDRuKOG0jlTh25XkMP2ksZ2Hs_OSzLP1Yfkk7u45hiXaiWNq4C2vsQ0_j5NPT4pHDPtGzw3lSXJ3PL2cfq8XnD59mZ4vK1lpMlUPEVkKtGHeqJhJknVO0dGgtdJpZ0VintWzqthPKNZY10irXoWNIgltxUrzf5262y4E6mx-P2JtN9APGnQnozb83o1-bVfhhuBKccZ0D3hwCYvi-pTSZwSdLfY8jhW0ySrVSt1rdCzmTbS0luxdm1ygNTYav_oPXYRvHvC7DodaN0Fxk9HaPbAwpRXJ3szEwt2UwuQzmdxkMtJm_-Hsff_Dh9zN4fQCYLPYu4mh9unOcMQlaQnbl3q39an3jIxlMg0EaTFMbYRp2O-jLPXEYDK5ijrn6xoEJYHVbc6nEL47w0us</recordid><startdate>20090201</startdate><enddate>20090201</enddate><creator>Amato, Pierre</creator><creator>Christner, Brent C</creator><general>American Society for Microbiology</general><general>American Society for Microbiology (ASM)</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T7</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20090201</creationdate><title>Energy Metabolism Response to Low-Temperature and Frozen Conditions in Psychrobacter cryohalolentis</title><author>Amato, Pierre ; Christner, Brent C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c593t-faaa8405612f65ee3ecff6ebfacc0d91c37cf994758d36f7c174c6fdaf1ae32c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Adaptation, Physiological</topic><topic>Adenosine Diphosphate - metabolism</topic><topic>Adenosine triphosphatase</topic><topic>Adenosine Triphosphate - metabolism</topic><topic>ATP</topic><topic>Biochemistry</topic><topic>Biological and medical sciences</topic><topic>Cell Respiration</topic><topic>Cold Temperature</topic><topic>Energy Metabolism</topic><topic>Enzymes</topic><topic>Freezing</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Metabolism</topic><topic>Microbiology</topic><topic>Microorganisms</topic><topic>Physiology and Biotechnology</topic><topic>Proton-Motive Force</topic><topic>Psychrobacter - physiology</topic><topic>Psychrobacter cryohalolentis</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Amato, Pierre</creatorcontrib><creatorcontrib>Christner, Brent C</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Applied and Environmental Microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Amato, Pierre</au><au>Christner, Brent C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Energy Metabolism Response to Low-Temperature and Frozen Conditions in Psychrobacter cryohalolentis</atitle><jtitle>Applied and Environmental Microbiology</jtitle><addtitle>Appl Environ Microbiol</addtitle><date>2009-02-01</date><risdate>2009</risdate><volume>75</volume><issue>3</issue><spage>711</spage><epage>718</epage><pages>711-718</pages><issn>0099-2240</issn><eissn>1098-5336</eissn><eissn>1098-6596</eissn><coden>AEMIDF</coden><abstract>Studies of cold-active enzymes have provided basic information on the molecular and biochemical properties of psychrophiles; however, the physiological strategies that compensate for low-temperature metabolism remain poorly understood. We investigated the cellular pools of ATP and ADP in Psychrobacter cryohalolentis K5 incubated at eight temperatures between 22°C and -80°C. Cellular ATP and ADP concentrations increased with decreasing temperature, and the most significant increases were observed in cells that were incubated as frozen suspensions (&lt;-5°C). Respiratory uncoupling significantly decreased this temperature-dependent response, indicating that the proton motive force was required for energy adaptation to frozen conditions. Since ATP and ADP are key substrates in metabolic and energy conservation reactions, increasing their concentrations may provide a strategy for offsetting the kinetic temperature effect, thereby maintaining reaction rates at low temperature. The adenylate levels increased significantly &lt;1 h after freezing and also when the cells were osmotically shocked to simulate the elevated solute concentrations encountered in the liquid fraction of the ice. Together, these data demonstrate that a substantial change in cellular energy metabolism is required for the cell to adapt to the low temperature and water activity conditions encountered during freezing. This physiological response may represent a critical biochemical compensation mechanism at low temperature, have relevance to cellular survival during freezing, and be important for the persistence of microorganisms in icy environments.</abstract><cop>Washington, DC</cop><pub>American Society for Microbiology</pub><pmid>19060163</pmid><doi>10.1128/AEM.02193-08</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0099-2240
ispartof Applied and Environmental Microbiology, 2009-02, Vol.75 (3), p.711-718
issn 0099-2240
1098-5336
1098-6596
language eng
recordid cdi_proquest_miscellaneous_21485441
source American Society for Microbiology; MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection
subjects Adaptation, Physiological
Adenosine Diphosphate - metabolism
Adenosine triphosphatase
Adenosine Triphosphate - metabolism
ATP
Biochemistry
Biological and medical sciences
Cell Respiration
Cold Temperature
Energy Metabolism
Enzymes
Freezing
Fundamental and applied biological sciences. Psychology
Metabolism
Microbiology
Microorganisms
Physiology and Biotechnology
Proton-Motive Force
Psychrobacter - physiology
Psychrobacter cryohalolentis
Studies
title Energy Metabolism Response to Low-Temperature and Frozen Conditions in Psychrobacter cryohalolentis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T05%3A16%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Energy%20Metabolism%20Response%20to%20Low-Temperature%20and%20Frozen%20Conditions%20in%20Psychrobacter%20cryohalolentis&rft.jtitle=Applied%20and%20Environmental%20Microbiology&rft.au=Amato,%20Pierre&rft.date=2009-02-01&rft.volume=75&rft.issue=3&rft.spage=711&rft.epage=718&rft.pages=711-718&rft.issn=0099-2240&rft.eissn=1098-5336&rft.coden=AEMIDF&rft_id=info:doi/10.1128/AEM.02193-08&rft_dat=%3Cproquest_cross%3E21485441%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=205973923&rft_id=info:pmid/19060163&rfr_iscdi=true