Application of biofiltration to the degradation of hydrogen sulfide in gas effluents

A laboratory scale bioreactor has been designed and set up in order to degrade hydrogen sulfide from an air stream. The reactor is a vertical column of 7 litre capacity and 1 meter in height. It is divided into three modules and each module is filled with pellets of agricultural residues as packing...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biodegradation (Dordrecht) 2000-01, Vol.11 (6), p.423-427
Hauptverfasser: Elías, A, Barona, A, Ríos, F J, Arreguy, A, Munguira, M, Peñas, J, Sanz, J L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 427
container_issue 6
container_start_page 423
container_title Biodegradation (Dordrecht)
container_volume 11
creator Elías, A
Barona, A
Ríos, F J
Arreguy, A
Munguira, M
Peñas, J
Sanz, J L
description A laboratory scale bioreactor has been designed and set up in order to degrade hydrogen sulfide from an air stream. The reactor is a vertical column of 7 litre capacity and 1 meter in height. It is divided into three modules and each module is filled with pellets of agricultural residues as packing bed material. The gas stream fed into the reactor through the upper inlet consists of a mixture of hydrogen sulfide and humidified air. The hydrogen sulfide content in the inlet gas stream was increased in stages until the degradation efficiency was below 90%. The parameters to be controlled in order to reach continuous and stable operation were temperature, moisture content and the percentage of the compound to be degraded at the inlet and outlet gas streams (removal or elimination efficiency). When the H2S mass loading rate was between 10 and 40 g m(-3) h(-1), the removal efficiency was greater than 90%. The support material had a good physical performance throughout operation time, which is evidence that this material is suitable for biofiltration purposes.
doi_str_mv 10.1023/A:1011615906278
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_21473048</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>581311</sourcerecordid><originalsourceid>FETCH-LOGICAL-c373t-2734db9ee1bd886b0f0e91ba8c560a4273e401fa8fb39da59242a22b5ac425933</originalsourceid><addsrcrecordid>eNqF0D1PwzAQBmALgWgpzGzIYmALnL9ttqriS6rEUubIju02VZqEOBn672nVwsDS6aR7H530HkK3BB4JUPY0fSZAiCTCgKRKn6ExEYpmRlFzjsZgKMuMpjBCVymtAcAooJdoRIjQinM1Rotp21ZlYfuyqXETsSubWFZ9d1j0De5XAfuw7Kz_M6ut75plqHEaqlj6gMsaL23CIcZqCHWfrtFFtFUKN8c5QV-vL4vZezb_fPuYTedZwRTrM6oY986EQJzXWjqIEAxxVhdCguW7OHAg0eromPFWGMqppdQJW3AqDGMT9HC423bN9xBSn2_KVISqsnVohpRTwhUDrk9CopkAEPI05EJLyvbw_h9cN0NX79rmijNNpKR7dHdEg9sEn7ddubHdNv99P_sB6MeF8g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>743816626</pqid></control><display><type>article</type><title>Application of biofiltration to the degradation of hydrogen sulfide in gas effluents</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Elías, A ; Barona, A ; Ríos, F J ; Arreguy, A ; Munguira, M ; Peñas, J ; Sanz, J L</creator><creatorcontrib>Elías, A ; Barona, A ; Ríos, F J ; Arreguy, A ; Munguira, M ; Peñas, J ; Sanz, J L</creatorcontrib><description>A laboratory scale bioreactor has been designed and set up in order to degrade hydrogen sulfide from an air stream. The reactor is a vertical column of 7 litre capacity and 1 meter in height. It is divided into three modules and each module is filled with pellets of agricultural residues as packing bed material. The gas stream fed into the reactor through the upper inlet consists of a mixture of hydrogen sulfide and humidified air. The hydrogen sulfide content in the inlet gas stream was increased in stages until the degradation efficiency was below 90%. The parameters to be controlled in order to reach continuous and stable operation were temperature, moisture content and the percentage of the compound to be degraded at the inlet and outlet gas streams (removal or elimination efficiency). When the H2S mass loading rate was between 10 and 40 g m(-3) h(-1), the removal efficiency was greater than 90%. The support material had a good physical performance throughout operation time, which is evidence that this material is suitable for biofiltration purposes.</description><identifier>ISSN: 0923-9820</identifier><identifier>EISSN: 1572-9729</identifier><identifier>DOI: 10.1023/A:1011615906278</identifier><identifier>PMID: 11587447</identifier><language>eng</language><publisher>Netherlands: Springer Nature B.V</publisher><subject>Air ; Biodegradation ; Biodegradation, Environmental ; Biofiltration ; Bioreactors ; Crop residues ; Efficiency ; Effluents ; Filtration - methods ; Gases ; Hydrogen sulfide ; Hydrogen Sulfide - metabolism ; Load distribution ; Moisture ; Moisture content ; Packing ; Reactors ; Thermal effects</subject><ispartof>Biodegradation (Dordrecht), 2000-01, Vol.11 (6), p.423-427</ispartof><rights>Kluwer Academic Publishers 2000</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c373t-2734db9ee1bd886b0f0e91ba8c560a4273e401fa8fb39da59242a22b5ac425933</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11587447$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Elías, A</creatorcontrib><creatorcontrib>Barona, A</creatorcontrib><creatorcontrib>Ríos, F J</creatorcontrib><creatorcontrib>Arreguy, A</creatorcontrib><creatorcontrib>Munguira, M</creatorcontrib><creatorcontrib>Peñas, J</creatorcontrib><creatorcontrib>Sanz, J L</creatorcontrib><title>Application of biofiltration to the degradation of hydrogen sulfide in gas effluents</title><title>Biodegradation (Dordrecht)</title><addtitle>Biodegradation</addtitle><description>A laboratory scale bioreactor has been designed and set up in order to degrade hydrogen sulfide from an air stream. The reactor is a vertical column of 7 litre capacity and 1 meter in height. It is divided into three modules and each module is filled with pellets of agricultural residues as packing bed material. The gas stream fed into the reactor through the upper inlet consists of a mixture of hydrogen sulfide and humidified air. The hydrogen sulfide content in the inlet gas stream was increased in stages until the degradation efficiency was below 90%. The parameters to be controlled in order to reach continuous and stable operation were temperature, moisture content and the percentage of the compound to be degraded at the inlet and outlet gas streams (removal or elimination efficiency). When the H2S mass loading rate was between 10 and 40 g m(-3) h(-1), the removal efficiency was greater than 90%. The support material had a good physical performance throughout operation time, which is evidence that this material is suitable for biofiltration purposes.</description><subject>Air</subject><subject>Biodegradation</subject><subject>Biodegradation, Environmental</subject><subject>Biofiltration</subject><subject>Bioreactors</subject><subject>Crop residues</subject><subject>Efficiency</subject><subject>Effluents</subject><subject>Filtration - methods</subject><subject>Gases</subject><subject>Hydrogen sulfide</subject><subject>Hydrogen Sulfide - metabolism</subject><subject>Load distribution</subject><subject>Moisture</subject><subject>Moisture content</subject><subject>Packing</subject><subject>Reactors</subject><subject>Thermal effects</subject><issn>0923-9820</issn><issn>1572-9729</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqF0D1PwzAQBmALgWgpzGzIYmALnL9ttqriS6rEUubIju02VZqEOBn672nVwsDS6aR7H530HkK3BB4JUPY0fSZAiCTCgKRKn6ExEYpmRlFzjsZgKMuMpjBCVymtAcAooJdoRIjQinM1Rotp21ZlYfuyqXETsSubWFZ9d1j0De5XAfuw7Kz_M6ut75plqHEaqlj6gMsaL23CIcZqCHWfrtFFtFUKN8c5QV-vL4vZezb_fPuYTedZwRTrM6oY986EQJzXWjqIEAxxVhdCguW7OHAg0eromPFWGMqppdQJW3AqDGMT9HC423bN9xBSn2_KVISqsnVohpRTwhUDrk9CopkAEPI05EJLyvbw_h9cN0NX79rmijNNpKR7dHdEg9sEn7ddubHdNv99P_sB6MeF8g</recordid><startdate>20000101</startdate><enddate>20000101</enddate><creator>Elías, A</creator><creator>Barona, A</creator><creator>Ríos, F J</creator><creator>Arreguy, A</creator><creator>Munguira, M</creator><creator>Peñas, J</creator><creator>Sanz, J L</creator><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>3V.</scope><scope>7QL</scope><scope>7ST</scope><scope>7T7</scope><scope>7UA</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H97</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>L.G</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>SOI</scope></search><sort><creationdate>20000101</creationdate><title>Application of biofiltration to the degradation of hydrogen sulfide in gas effluents</title><author>Elías, A ; Barona, A ; Ríos, F J ; Arreguy, A ; Munguira, M ; Peñas, J ; Sanz, J L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c373t-2734db9ee1bd886b0f0e91ba8c560a4273e401fa8fb39da59242a22b5ac425933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Air</topic><topic>Biodegradation</topic><topic>Biodegradation, Environmental</topic><topic>Biofiltration</topic><topic>Bioreactors</topic><topic>Crop residues</topic><topic>Efficiency</topic><topic>Effluents</topic><topic>Filtration - methods</topic><topic>Gases</topic><topic>Hydrogen sulfide</topic><topic>Hydrogen Sulfide - metabolism</topic><topic>Load distribution</topic><topic>Moisture</topic><topic>Moisture content</topic><topic>Packing</topic><topic>Reactors</topic><topic>Thermal effects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Elías, A</creatorcontrib><creatorcontrib>Barona, A</creatorcontrib><creatorcontrib>Ríos, F J</creatorcontrib><creatorcontrib>Arreguy, A</creatorcontrib><creatorcontrib>Munguira, M</creatorcontrib><creatorcontrib>Peñas, J</creatorcontrib><creatorcontrib>Sanz, J L</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Water Resources Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><jtitle>Biodegradation (Dordrecht)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Elías, A</au><au>Barona, A</au><au>Ríos, F J</au><au>Arreguy, A</au><au>Munguira, M</au><au>Peñas, J</au><au>Sanz, J L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Application of biofiltration to the degradation of hydrogen sulfide in gas effluents</atitle><jtitle>Biodegradation (Dordrecht)</jtitle><addtitle>Biodegradation</addtitle><date>2000-01-01</date><risdate>2000</risdate><volume>11</volume><issue>6</issue><spage>423</spage><epage>427</epage><pages>423-427</pages><issn>0923-9820</issn><eissn>1572-9729</eissn><abstract>A laboratory scale bioreactor has been designed and set up in order to degrade hydrogen sulfide from an air stream. The reactor is a vertical column of 7 litre capacity and 1 meter in height. It is divided into three modules and each module is filled with pellets of agricultural residues as packing bed material. The gas stream fed into the reactor through the upper inlet consists of a mixture of hydrogen sulfide and humidified air. The hydrogen sulfide content in the inlet gas stream was increased in stages until the degradation efficiency was below 90%. The parameters to be controlled in order to reach continuous and stable operation were temperature, moisture content and the percentage of the compound to be degraded at the inlet and outlet gas streams (removal or elimination efficiency). When the H2S mass loading rate was between 10 and 40 g m(-3) h(-1), the removal efficiency was greater than 90%. The support material had a good physical performance throughout operation time, which is evidence that this material is suitable for biofiltration purposes.</abstract><cop>Netherlands</cop><pub>Springer Nature B.V</pub><pmid>11587447</pmid><doi>10.1023/A:1011615906278</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0923-9820
ispartof Biodegradation (Dordrecht), 2000-01, Vol.11 (6), p.423-427
issn 0923-9820
1572-9729
language eng
recordid cdi_proquest_miscellaneous_21473048
source MEDLINE; SpringerLink Journals - AutoHoldings
subjects Air
Biodegradation
Biodegradation, Environmental
Biofiltration
Bioreactors
Crop residues
Efficiency
Effluents
Filtration - methods
Gases
Hydrogen sulfide
Hydrogen Sulfide - metabolism
Load distribution
Moisture
Moisture content
Packing
Reactors
Thermal effects
title Application of biofiltration to the degradation of hydrogen sulfide in gas effluents
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T22%3A18%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Application%20of%20biofiltration%20to%20the%20degradation%20of%20hydrogen%20sulfide%20in%20gas%20effluents&rft.jtitle=Biodegradation%20(Dordrecht)&rft.au=El%C3%ADas,%20A&rft.date=2000-01-01&rft.volume=11&rft.issue=6&rft.spage=423&rft.epage=427&rft.pages=423-427&rft.issn=0923-9820&rft.eissn=1572-9729&rft_id=info:doi/10.1023/A:1011615906278&rft_dat=%3Cproquest_pubme%3E581311%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=743816626&rft_id=info:pmid/11587447&rfr_iscdi=true