The first low voltage, low noise differential silicon microphone, technology development and measurement results
The first differential silicon microphone is presented. This capacitive working device consists of two backplates with a membrane in between. Due to the balanced arrangement the air gap can be minimized. Thus, a higher electrical field and sensitivity can be achieved for low voltages. A dedicated pr...
Gespeichert in:
Veröffentlicht in: | Sensors and actuators. A, Physical Physical, 2002, Vol.95 (2), p.196-201 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 201 |
---|---|
container_issue | 2 |
container_start_page | 196 |
container_title | Sensors and actuators. A, Physical |
container_volume | 95 |
creator | Rombach, Pirmin Müllenborn, Matthias Klein, Udo Rasmussen, Kurt |
description | The first differential silicon microphone is presented. This capacitive working device consists of two backplates with a membrane in between. Due to the balanced arrangement the air gap can be minimized. Thus, a higher electrical field and sensitivity can be achieved for low voltages. A dedicated process sequence has been developed in order to get the optimum mechanical and electrical properties for all structural layers. Furthermore, a sandwich structure has been developed to achieve a reproducible, very sensitive microphone membrane with a thickness of only 0.5
μm and a stress of 45
MPa. The total sensitivity for a bias of 1.5
V was measured to be 13
mV/Pa and the A-weighted equivalent input noise was measured to be 22.5
dB SPLA. This noise level does not correspond to the simulations where only 21.0
dB SPLA have been predicted. Modeling of the membrane using distributed resistors shows that the lumped element resistor used for the membrane resistance has been underestimated and thus, the noise level. The upper limit of the dynamic range has been determined to be 118
dB SPL and the total harmonic distortion at 80
dB SPL is below 0.26%. |
doi_str_mv | 10.1016/S0924-4247(01)00736-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_21460123</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0924424701007361</els_id><sourcerecordid>594688</sourcerecordid><originalsourceid>FETCH-LOGICAL-c434t-df9fc5895da25046e58b860c85a91dc2d16d7eaa134ef5b84ba7c458438d71aa3</originalsourceid><addsrcrecordid>eNqFkEGLFDEQhYMoOK7-BCEXRcHWpJPuTp9EFl2FBQ-u51CTVHYi6aRN9Yzsv7dnZnGPnooH33uPeoy9lOK9FLL_8EOMrW50q4c3Qr4VYlB9Ix-xjTSDapTox8ds8w95yp4R_RJCKDUMGzbf7JCHWGnhqfzhh5IWuMV3J5FLJOQ-hoAV8xIhcYopupL5FF0t867kFV3Q7XJJ5faOezxgKvO00hyy5xMC7SuedEXap4WesycBEuGL-3vBfn75fHP5tbn-fvXt8tN147TSS-PDGFxnxs5D2wndY2e2phfOdDBK71ovez8ggFQaQ7c1eguD053RyvhBAqgL9vqcO9fye4-02CmSw5QgY9mTbaXuhWzVCnZncP2IqGKwc40T1DsrhT3ua0_72uN4Vkh72tfK1ffqvgDIQQoVsov0YFZaGmWO-R_PHK7fHiJWSy5iduhjRbdYX-J_mv4CYaiR0g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>21460123</pqid></control><display><type>article</type><title>The first low voltage, low noise differential silicon microphone, technology development and measurement results</title><source>Elsevier ScienceDirect Journals</source><creator>Rombach, Pirmin ; Müllenborn, Matthias ; Klein, Udo ; Rasmussen, Kurt</creator><creatorcontrib>Rombach, Pirmin ; Müllenborn, Matthias ; Klein, Udo ; Rasmussen, Kurt</creatorcontrib><description>The first differential silicon microphone is presented. This capacitive working device consists of two backplates with a membrane in between. Due to the balanced arrangement the air gap can be minimized. Thus, a higher electrical field and sensitivity can be achieved for low voltages. A dedicated process sequence has been developed in order to get the optimum mechanical and electrical properties for all structural layers. Furthermore, a sandwich structure has been developed to achieve a reproducible, very sensitive microphone membrane with a thickness of only 0.5
μm and a stress of 45
MPa. The total sensitivity for a bias of 1.5
V was measured to be 13
mV/Pa and the A-weighted equivalent input noise was measured to be 22.5
dB SPLA. This noise level does not correspond to the simulations where only 21.0
dB SPLA have been predicted. Modeling of the membrane using distributed resistors shows that the lumped element resistor used for the membrane resistance has been underestimated and thus, the noise level. The upper limit of the dynamic range has been determined to be 118
dB SPL and the total harmonic distortion at 80
dB SPL is below 0.26%.</description><identifier>ISSN: 0924-4247</identifier><identifier>EISSN: 1873-3069</identifier><identifier>DOI: 10.1016/S0924-4247(01)00736-1</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Acoustic noise measurement ; Applied sciences ; Condenser ; Differential ; Electric fields ; Electronics ; Exact sciences and technology ; Harmonic distortion ; Hybrid microelectronics; thick films ; Low noise ; Low voltage ; Mathematical models ; Micro- and nanoelectromechanical devices (mems/nems) ; Microelectronic fabrication (materials and surfaces technology) ; Microphone ; Resistors ; Sandwich structures ; Semiconducting silicon ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Sensitivity analysis ; Single chip ; Stresses ; Voltage measurement</subject><ispartof>Sensors and actuators. A, Physical, 2002, Vol.95 (2), p.196-201</ispartof><rights>2001 IEEE</rights><rights>2002 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c434t-df9fc5895da25046e58b860c85a91dc2d16d7eaa134ef5b84ba7c458438d71aa3</citedby><cites>FETCH-LOGICAL-c434t-df9fc5895da25046e58b860c85a91dc2d16d7eaa134ef5b84ba7c458438d71aa3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0924424701007361$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,3537,4010,4036,4037,23909,23910,25118,27900,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=13418383$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Rombach, Pirmin</creatorcontrib><creatorcontrib>Müllenborn, Matthias</creatorcontrib><creatorcontrib>Klein, Udo</creatorcontrib><creatorcontrib>Rasmussen, Kurt</creatorcontrib><title>The first low voltage, low noise differential silicon microphone, technology development and measurement results</title><title>Sensors and actuators. A, Physical</title><description>The first differential silicon microphone is presented. This capacitive working device consists of two backplates with a membrane in between. Due to the balanced arrangement the air gap can be minimized. Thus, a higher electrical field and sensitivity can be achieved for low voltages. A dedicated process sequence has been developed in order to get the optimum mechanical and electrical properties for all structural layers. Furthermore, a sandwich structure has been developed to achieve a reproducible, very sensitive microphone membrane with a thickness of only 0.5
μm and a stress of 45
MPa. The total sensitivity for a bias of 1.5
V was measured to be 13
mV/Pa and the A-weighted equivalent input noise was measured to be 22.5
dB SPLA. This noise level does not correspond to the simulations where only 21.0
dB SPLA have been predicted. Modeling of the membrane using distributed resistors shows that the lumped element resistor used for the membrane resistance has been underestimated and thus, the noise level. The upper limit of the dynamic range has been determined to be 118
dB SPL and the total harmonic distortion at 80
dB SPL is below 0.26%.</description><subject>Acoustic noise measurement</subject><subject>Applied sciences</subject><subject>Condenser</subject><subject>Differential</subject><subject>Electric fields</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Harmonic distortion</subject><subject>Hybrid microelectronics; thick films</subject><subject>Low noise</subject><subject>Low voltage</subject><subject>Mathematical models</subject><subject>Micro- and nanoelectromechanical devices (mems/nems)</subject><subject>Microelectronic fabrication (materials and surfaces technology)</subject><subject>Microphone</subject><subject>Resistors</subject><subject>Sandwich structures</subject><subject>Semiconducting silicon</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Sensitivity analysis</subject><subject>Single chip</subject><subject>Stresses</subject><subject>Voltage measurement</subject><issn>0924-4247</issn><issn>1873-3069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNqFkEGLFDEQhYMoOK7-BCEXRcHWpJPuTp9EFl2FBQ-u51CTVHYi6aRN9Yzsv7dnZnGPnooH33uPeoy9lOK9FLL_8EOMrW50q4c3Qr4VYlB9Ix-xjTSDapTox8ds8w95yp4R_RJCKDUMGzbf7JCHWGnhqfzhh5IWuMV3J5FLJOQ-hoAV8xIhcYopupL5FF0t867kFV3Q7XJJ5faOezxgKvO00hyy5xMC7SuedEXap4WesycBEuGL-3vBfn75fHP5tbn-fvXt8tN147TSS-PDGFxnxs5D2wndY2e2phfOdDBK71ovez8ggFQaQ7c1eguD053RyvhBAqgL9vqcO9fye4-02CmSw5QgY9mTbaXuhWzVCnZncP2IqGKwc40T1DsrhT3ua0_72uN4Vkh72tfK1ffqvgDIQQoVsov0YFZaGmWO-R_PHK7fHiJWSy5iduhjRbdYX-J_mv4CYaiR0g</recordid><startdate>2002</startdate><enddate>2002</enddate><creator>Rombach, Pirmin</creator><creator>Müllenborn, Matthias</creator><creator>Klein, Udo</creator><creator>Rasmussen, Kurt</creator><general>Elsevier B.V</general><general>Elsevier Science</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2002</creationdate><title>The first low voltage, low noise differential silicon microphone, technology development and measurement results</title><author>Rombach, Pirmin ; Müllenborn, Matthias ; Klein, Udo ; Rasmussen, Kurt</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c434t-df9fc5895da25046e58b860c85a91dc2d16d7eaa134ef5b84ba7c458438d71aa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Acoustic noise measurement</topic><topic>Applied sciences</topic><topic>Condenser</topic><topic>Differential</topic><topic>Electric fields</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Harmonic distortion</topic><topic>Hybrid microelectronics; thick films</topic><topic>Low noise</topic><topic>Low voltage</topic><topic>Mathematical models</topic><topic>Micro- and nanoelectromechanical devices (mems/nems)</topic><topic>Microelectronic fabrication (materials and surfaces technology)</topic><topic>Microphone</topic><topic>Resistors</topic><topic>Sandwich structures</topic><topic>Semiconducting silicon</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Sensitivity analysis</topic><topic>Single chip</topic><topic>Stresses</topic><topic>Voltage measurement</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rombach, Pirmin</creatorcontrib><creatorcontrib>Müllenborn, Matthias</creatorcontrib><creatorcontrib>Klein, Udo</creatorcontrib><creatorcontrib>Rasmussen, Kurt</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Sensors and actuators. A, Physical</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rombach, Pirmin</au><au>Müllenborn, Matthias</au><au>Klein, Udo</au><au>Rasmussen, Kurt</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The first low voltage, low noise differential silicon microphone, technology development and measurement results</atitle><jtitle>Sensors and actuators. A, Physical</jtitle><date>2002</date><risdate>2002</risdate><volume>95</volume><issue>2</issue><spage>196</spage><epage>201</epage><pages>196-201</pages><issn>0924-4247</issn><eissn>1873-3069</eissn><abstract>The first differential silicon microphone is presented. This capacitive working device consists of two backplates with a membrane in between. Due to the balanced arrangement the air gap can be minimized. Thus, a higher electrical field and sensitivity can be achieved for low voltages. A dedicated process sequence has been developed in order to get the optimum mechanical and electrical properties for all structural layers. Furthermore, a sandwich structure has been developed to achieve a reproducible, very sensitive microphone membrane with a thickness of only 0.5
μm and a stress of 45
MPa. The total sensitivity for a bias of 1.5
V was measured to be 13
mV/Pa and the A-weighted equivalent input noise was measured to be 22.5
dB SPLA. This noise level does not correspond to the simulations where only 21.0
dB SPLA have been predicted. Modeling of the membrane using distributed resistors shows that the lumped element resistor used for the membrane resistance has been underestimated and thus, the noise level. The upper limit of the dynamic range has been determined to be 118
dB SPL and the total harmonic distortion at 80
dB SPL is below 0.26%.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/S0924-4247(01)00736-1</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0924-4247 |
ispartof | Sensors and actuators. A, Physical, 2002, Vol.95 (2), p.196-201 |
issn | 0924-4247 1873-3069 |
language | eng |
recordid | cdi_proquest_miscellaneous_21460123 |
source | Elsevier ScienceDirect Journals |
subjects | Acoustic noise measurement Applied sciences Condenser Differential Electric fields Electronics Exact sciences and technology Harmonic distortion Hybrid microelectronics thick films Low noise Low voltage Mathematical models Micro- and nanoelectromechanical devices (mems/nems) Microelectronic fabrication (materials and surfaces technology) Microphone Resistors Sandwich structures Semiconducting silicon Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices Sensitivity analysis Single chip Stresses Voltage measurement |
title | The first low voltage, low noise differential silicon microphone, technology development and measurement results |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T04%3A44%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20first%20low%20voltage,%20low%20noise%20differential%20silicon%20microphone,%20technology%20development%20and%20measurement%20results&rft.jtitle=Sensors%20and%20actuators.%20A,%20Physical&rft.au=Rombach,%20Pirmin&rft.date=2002&rft.volume=95&rft.issue=2&rft.spage=196&rft.epage=201&rft.pages=196-201&rft.issn=0924-4247&rft.eissn=1873-3069&rft_id=info:doi/10.1016/S0924-4247(01)00736-1&rft_dat=%3Cproquest_cross%3E594688%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=21460123&rft_id=info:pmid/&rft_els_id=S0924424701007361&rfr_iscdi=true |