The first low voltage, low noise differential silicon microphone, technology development and measurement results

The first differential silicon microphone is presented. This capacitive working device consists of two backplates with a membrane in between. Due to the balanced arrangement the air gap can be minimized. Thus, a higher electrical field and sensitivity can be achieved for low voltages. A dedicated pr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors and actuators. A, Physical Physical, 2002, Vol.95 (2), p.196-201
Hauptverfasser: Rombach, Pirmin, Müllenborn, Matthias, Klein, Udo, Rasmussen, Kurt
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 201
container_issue 2
container_start_page 196
container_title Sensors and actuators. A, Physical
container_volume 95
creator Rombach, Pirmin
Müllenborn, Matthias
Klein, Udo
Rasmussen, Kurt
description The first differential silicon microphone is presented. This capacitive working device consists of two backplates with a membrane in between. Due to the balanced arrangement the air gap can be minimized. Thus, a higher electrical field and sensitivity can be achieved for low voltages. A dedicated process sequence has been developed in order to get the optimum mechanical and electrical properties for all structural layers. Furthermore, a sandwich structure has been developed to achieve a reproducible, very sensitive microphone membrane with a thickness of only 0.5 μm and a stress of 45 MPa. The total sensitivity for a bias of 1.5 V was measured to be 13 mV/Pa and the A-weighted equivalent input noise was measured to be 22.5 dB SPLA. This noise level does not correspond to the simulations where only 21.0 dB SPLA have been predicted. Modeling of the membrane using distributed resistors shows that the lumped element resistor used for the membrane resistance has been underestimated and thus, the noise level. The upper limit of the dynamic range has been determined to be 118 dB SPL and the total harmonic distortion at 80 dB SPL is below 0.26%.
doi_str_mv 10.1016/S0924-4247(01)00736-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_21460123</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0924424701007361</els_id><sourcerecordid>594688</sourcerecordid><originalsourceid>FETCH-LOGICAL-c434t-df9fc5895da25046e58b860c85a91dc2d16d7eaa134ef5b84ba7c458438d71aa3</originalsourceid><addsrcrecordid>eNqFkEGLFDEQhYMoOK7-BCEXRcHWpJPuTp9EFl2FBQ-u51CTVHYi6aRN9Yzsv7dnZnGPnooH33uPeoy9lOK9FLL_8EOMrW50q4c3Qr4VYlB9Ix-xjTSDapTox8ds8w95yp4R_RJCKDUMGzbf7JCHWGnhqfzhh5IWuMV3J5FLJOQ-hoAV8xIhcYopupL5FF0t867kFV3Q7XJJ5faOezxgKvO00hyy5xMC7SuedEXap4WesycBEuGL-3vBfn75fHP5tbn-fvXt8tN147TSS-PDGFxnxs5D2wndY2e2phfOdDBK71ovez8ggFQaQ7c1eguD053RyvhBAqgL9vqcO9fye4-02CmSw5QgY9mTbaXuhWzVCnZncP2IqGKwc40T1DsrhT3ua0_72uN4Vkh72tfK1ffqvgDIQQoVsov0YFZaGmWO-R_PHK7fHiJWSy5iduhjRbdYX-J_mv4CYaiR0g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>21460123</pqid></control><display><type>article</type><title>The first low voltage, low noise differential silicon microphone, technology development and measurement results</title><source>Elsevier ScienceDirect Journals</source><creator>Rombach, Pirmin ; Müllenborn, Matthias ; Klein, Udo ; Rasmussen, Kurt</creator><creatorcontrib>Rombach, Pirmin ; Müllenborn, Matthias ; Klein, Udo ; Rasmussen, Kurt</creatorcontrib><description>The first differential silicon microphone is presented. This capacitive working device consists of two backplates with a membrane in between. Due to the balanced arrangement the air gap can be minimized. Thus, a higher electrical field and sensitivity can be achieved for low voltages. A dedicated process sequence has been developed in order to get the optimum mechanical and electrical properties for all structural layers. Furthermore, a sandwich structure has been developed to achieve a reproducible, very sensitive microphone membrane with a thickness of only 0.5 μm and a stress of 45 MPa. The total sensitivity for a bias of 1.5 V was measured to be 13 mV/Pa and the A-weighted equivalent input noise was measured to be 22.5 dB SPLA. This noise level does not correspond to the simulations where only 21.0 dB SPLA have been predicted. Modeling of the membrane using distributed resistors shows that the lumped element resistor used for the membrane resistance has been underestimated and thus, the noise level. The upper limit of the dynamic range has been determined to be 118 dB SPL and the total harmonic distortion at 80 dB SPL is below 0.26%.</description><identifier>ISSN: 0924-4247</identifier><identifier>EISSN: 1873-3069</identifier><identifier>DOI: 10.1016/S0924-4247(01)00736-1</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Acoustic noise measurement ; Applied sciences ; Condenser ; Differential ; Electric fields ; Electronics ; Exact sciences and technology ; Harmonic distortion ; Hybrid microelectronics; thick films ; Low noise ; Low voltage ; Mathematical models ; Micro- and nanoelectromechanical devices (mems/nems) ; Microelectronic fabrication (materials and surfaces technology) ; Microphone ; Resistors ; Sandwich structures ; Semiconducting silicon ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Sensitivity analysis ; Single chip ; Stresses ; Voltage measurement</subject><ispartof>Sensors and actuators. A, Physical, 2002, Vol.95 (2), p.196-201</ispartof><rights>2001 IEEE</rights><rights>2002 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c434t-df9fc5895da25046e58b860c85a91dc2d16d7eaa134ef5b84ba7c458438d71aa3</citedby><cites>FETCH-LOGICAL-c434t-df9fc5895da25046e58b860c85a91dc2d16d7eaa134ef5b84ba7c458438d71aa3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0924424701007361$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,3537,4010,4036,4037,23909,23910,25118,27900,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=13418383$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Rombach, Pirmin</creatorcontrib><creatorcontrib>Müllenborn, Matthias</creatorcontrib><creatorcontrib>Klein, Udo</creatorcontrib><creatorcontrib>Rasmussen, Kurt</creatorcontrib><title>The first low voltage, low noise differential silicon microphone, technology development and measurement results</title><title>Sensors and actuators. A, Physical</title><description>The first differential silicon microphone is presented. This capacitive working device consists of two backplates with a membrane in between. Due to the balanced arrangement the air gap can be minimized. Thus, a higher electrical field and sensitivity can be achieved for low voltages. A dedicated process sequence has been developed in order to get the optimum mechanical and electrical properties for all structural layers. Furthermore, a sandwich structure has been developed to achieve a reproducible, very sensitive microphone membrane with a thickness of only 0.5 μm and a stress of 45 MPa. The total sensitivity for a bias of 1.5 V was measured to be 13 mV/Pa and the A-weighted equivalent input noise was measured to be 22.5 dB SPLA. This noise level does not correspond to the simulations where only 21.0 dB SPLA have been predicted. Modeling of the membrane using distributed resistors shows that the lumped element resistor used for the membrane resistance has been underestimated and thus, the noise level. The upper limit of the dynamic range has been determined to be 118 dB SPL and the total harmonic distortion at 80 dB SPL is below 0.26%.</description><subject>Acoustic noise measurement</subject><subject>Applied sciences</subject><subject>Condenser</subject><subject>Differential</subject><subject>Electric fields</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Harmonic distortion</subject><subject>Hybrid microelectronics; thick films</subject><subject>Low noise</subject><subject>Low voltage</subject><subject>Mathematical models</subject><subject>Micro- and nanoelectromechanical devices (mems/nems)</subject><subject>Microelectronic fabrication (materials and surfaces technology)</subject><subject>Microphone</subject><subject>Resistors</subject><subject>Sandwich structures</subject><subject>Semiconducting silicon</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Sensitivity analysis</subject><subject>Single chip</subject><subject>Stresses</subject><subject>Voltage measurement</subject><issn>0924-4247</issn><issn>1873-3069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNqFkEGLFDEQhYMoOK7-BCEXRcHWpJPuTp9EFl2FBQ-u51CTVHYi6aRN9Yzsv7dnZnGPnooH33uPeoy9lOK9FLL_8EOMrW50q4c3Qr4VYlB9Ix-xjTSDapTox8ds8w95yp4R_RJCKDUMGzbf7JCHWGnhqfzhh5IWuMV3J5FLJOQ-hoAV8xIhcYopupL5FF0t867kFV3Q7XJJ5faOezxgKvO00hyy5xMC7SuedEXap4WesycBEuGL-3vBfn75fHP5tbn-fvXt8tN147TSS-PDGFxnxs5D2wndY2e2phfOdDBK71ovez8ggFQaQ7c1eguD053RyvhBAqgL9vqcO9fye4-02CmSw5QgY9mTbaXuhWzVCnZncP2IqGKwc40T1DsrhT3ua0_72uN4Vkh72tfK1ffqvgDIQQoVsov0YFZaGmWO-R_PHK7fHiJWSy5iduhjRbdYX-J_mv4CYaiR0g</recordid><startdate>2002</startdate><enddate>2002</enddate><creator>Rombach, Pirmin</creator><creator>Müllenborn, Matthias</creator><creator>Klein, Udo</creator><creator>Rasmussen, Kurt</creator><general>Elsevier B.V</general><general>Elsevier Science</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2002</creationdate><title>The first low voltage, low noise differential silicon microphone, technology development and measurement results</title><author>Rombach, Pirmin ; Müllenborn, Matthias ; Klein, Udo ; Rasmussen, Kurt</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c434t-df9fc5895da25046e58b860c85a91dc2d16d7eaa134ef5b84ba7c458438d71aa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Acoustic noise measurement</topic><topic>Applied sciences</topic><topic>Condenser</topic><topic>Differential</topic><topic>Electric fields</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Harmonic distortion</topic><topic>Hybrid microelectronics; thick films</topic><topic>Low noise</topic><topic>Low voltage</topic><topic>Mathematical models</topic><topic>Micro- and nanoelectromechanical devices (mems/nems)</topic><topic>Microelectronic fabrication (materials and surfaces technology)</topic><topic>Microphone</topic><topic>Resistors</topic><topic>Sandwich structures</topic><topic>Semiconducting silicon</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Sensitivity analysis</topic><topic>Single chip</topic><topic>Stresses</topic><topic>Voltage measurement</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rombach, Pirmin</creatorcontrib><creatorcontrib>Müllenborn, Matthias</creatorcontrib><creatorcontrib>Klein, Udo</creatorcontrib><creatorcontrib>Rasmussen, Kurt</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Sensors and actuators. A, Physical</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rombach, Pirmin</au><au>Müllenborn, Matthias</au><au>Klein, Udo</au><au>Rasmussen, Kurt</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The first low voltage, low noise differential silicon microphone, technology development and measurement results</atitle><jtitle>Sensors and actuators. A, Physical</jtitle><date>2002</date><risdate>2002</risdate><volume>95</volume><issue>2</issue><spage>196</spage><epage>201</epage><pages>196-201</pages><issn>0924-4247</issn><eissn>1873-3069</eissn><abstract>The first differential silicon microphone is presented. This capacitive working device consists of two backplates with a membrane in between. Due to the balanced arrangement the air gap can be minimized. Thus, a higher electrical field and sensitivity can be achieved for low voltages. A dedicated process sequence has been developed in order to get the optimum mechanical and electrical properties for all structural layers. Furthermore, a sandwich structure has been developed to achieve a reproducible, very sensitive microphone membrane with a thickness of only 0.5 μm and a stress of 45 MPa. The total sensitivity for a bias of 1.5 V was measured to be 13 mV/Pa and the A-weighted equivalent input noise was measured to be 22.5 dB SPLA. This noise level does not correspond to the simulations where only 21.0 dB SPLA have been predicted. Modeling of the membrane using distributed resistors shows that the lumped element resistor used for the membrane resistance has been underestimated and thus, the noise level. The upper limit of the dynamic range has been determined to be 118 dB SPL and the total harmonic distortion at 80 dB SPL is below 0.26%.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/S0924-4247(01)00736-1</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0924-4247
ispartof Sensors and actuators. A, Physical, 2002, Vol.95 (2), p.196-201
issn 0924-4247
1873-3069
language eng
recordid cdi_proquest_miscellaneous_21460123
source Elsevier ScienceDirect Journals
subjects Acoustic noise measurement
Applied sciences
Condenser
Differential
Electric fields
Electronics
Exact sciences and technology
Harmonic distortion
Hybrid microelectronics
thick films
Low noise
Low voltage
Mathematical models
Micro- and nanoelectromechanical devices (mems/nems)
Microelectronic fabrication (materials and surfaces technology)
Microphone
Resistors
Sandwich structures
Semiconducting silicon
Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices
Sensitivity analysis
Single chip
Stresses
Voltage measurement
title The first low voltage, low noise differential silicon microphone, technology development and measurement results
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T04%3A44%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20first%20low%20voltage,%20low%20noise%20differential%20silicon%20microphone,%20technology%20development%20and%20measurement%20results&rft.jtitle=Sensors%20and%20actuators.%20A,%20Physical&rft.au=Rombach,%20Pirmin&rft.date=2002&rft.volume=95&rft.issue=2&rft.spage=196&rft.epage=201&rft.pages=196-201&rft.issn=0924-4247&rft.eissn=1873-3069&rft_id=info:doi/10.1016/S0924-4247(01)00736-1&rft_dat=%3Cproquest_cross%3E594688%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=21460123&rft_id=info:pmid/&rft_els_id=S0924424701007361&rfr_iscdi=true