Traveling waves of calcium in pancreatic acinar cells: model construction and bifurcation analysis
We construct and study a model for intracellular calcium wave propagation, with particular attention to pancreatic acinar cells. The model is based on a model of the inositol trisphosphate (IP 3) receptor, which assumes that calcium modulates the binding affinity of IP 3 to the receptor. Two version...
Gespeichert in:
Veröffentlicht in: | Physica. D 2000-10, Vol.145 (1), p.158-179 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 179 |
---|---|
container_issue | 1 |
container_start_page | 158 |
container_title | Physica. D |
container_volume | 145 |
creator | Sneyd, James LeBeau, Andrew Yule, David |
description | We construct and study a model for intracellular calcium wave propagation, with particular attention to pancreatic acinar cells. The model is based on a model of the inositol trisphosphate (IP
3) receptor, which assumes that calcium modulates the binding affinity of IP
3 to the receptor. Two versions of the model, one simpler than the other, are studied numerically. In both versions, solitary waves in the excitable regime arise via homoclinic bifurcations in the traveling wave equations. As the background concentration of IP
3 is increased, the wave speed increases, and for some values of the IP
3 concentration, the initial pulse gives rise to secondary pulses that travel in both directions. This can give rise to irregular spatio-temporal behavior, or to trains of pulses. In the simpler model, these secondary waves are related to the presence of a T-point, a heteroclinic cycle, and an associated spiral of homoclinic orbits, which terminate the branch of homoclinic orbits. |
doi_str_mv | 10.1016/S0167-2789(00)00108-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_21455248</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167278900001081</els_id><sourcerecordid>512025</sourcerecordid><originalsourceid>FETCH-LOGICAL-c338t-1acf827f7b34b028e5908a319af5363968996a8bb08d8e5d338666077a194d093</originalsourceid><addsrcrecordid>eNqFkE1LxDAQhoMouK7-BCEn0UN1krRN6kVk8QsWPLiewzRNJdJN1qRV9t_b_cCrl_lg3neYeQg5Z3DNgJU3b2OQGZequgS4AmCgMnZAJkxJning_JBM_iTH5CSlTxhVUsgJqRcRv23n_Af9GYtEQ0sNdsYNS-o8XaE30WLvDEXjPEZqbNelW7oMje2oCT71cTC9C56ib2jt2iEa3PfYrZNLp-SoxS7Zs32ekvfHh8XsOZu_Pr3M7ueZEUL1GUPTKi5bWYu8Bq5sUYFCwSpsC1GKqlRVVaKqa1DNOGxGU1mWICWyKm-gElNysdu7iuFrsKnXS5c256K3YUias7woeK5GYbETmhhSirbVq-iWGNeagd4Q1VuieoNLA-gtUc1G393OZ8cvvp2NOhlnvbGNi9b0ugnunw2_evF9_A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>21455248</pqid></control><display><type>article</type><title>Traveling waves of calcium in pancreatic acinar cells: model construction and bifurcation analysis</title><source>Elsevier ScienceDirect Journals</source><creator>Sneyd, James ; LeBeau, Andrew ; Yule, David</creator><creatorcontrib>Sneyd, James ; LeBeau, Andrew ; Yule, David</creatorcontrib><description>We construct and study a model for intracellular calcium wave propagation, with particular attention to pancreatic acinar cells. The model is based on a model of the inositol trisphosphate (IP
3) receptor, which assumes that calcium modulates the binding affinity of IP
3 to the receptor. Two versions of the model, one simpler than the other, are studied numerically. In both versions, solitary waves in the excitable regime arise via homoclinic bifurcations in the traveling wave equations. As the background concentration of IP
3 is increased, the wave speed increases, and for some values of the IP
3 concentration, the initial pulse gives rise to secondary pulses that travel in both directions. This can give rise to irregular spatio-temporal behavior, or to trains of pulses. In the simpler model, these secondary waves are related to the presence of a T-point, a heteroclinic cycle, and an associated spiral of homoclinic orbits, which terminate the branch of homoclinic orbits.</description><identifier>ISSN: 0167-2789</identifier><identifier>EISSN: 1872-8022</identifier><identifier>DOI: 10.1016/S0167-2789(00)00108-1</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Bifurcation (mathematics) ; Bifurcation theory ; Calcium waves ; Cells ; Electromagnetic wave propagation ; Homoclinic bifurcations ; Inositol trisphosphate receptor ; Mathematical model ; Mathematical models ; Pancreatic acinar cells ; T-point ; Traveling waves</subject><ispartof>Physica. D, 2000-10, Vol.145 (1), p.158-179</ispartof><rights>2000 Elsevier Science B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c338t-1acf827f7b34b028e5908a319af5363968996a8bb08d8e5d338666077a194d093</citedby><cites>FETCH-LOGICAL-c338t-1acf827f7b34b028e5908a319af5363968996a8bb08d8e5d338666077a194d093</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0167-2789(00)00108-1$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids></links><search><creatorcontrib>Sneyd, James</creatorcontrib><creatorcontrib>LeBeau, Andrew</creatorcontrib><creatorcontrib>Yule, David</creatorcontrib><title>Traveling waves of calcium in pancreatic acinar cells: model construction and bifurcation analysis</title><title>Physica. D</title><description>We construct and study a model for intracellular calcium wave propagation, with particular attention to pancreatic acinar cells. The model is based on a model of the inositol trisphosphate (IP
3) receptor, which assumes that calcium modulates the binding affinity of IP
3 to the receptor. Two versions of the model, one simpler than the other, are studied numerically. In both versions, solitary waves in the excitable regime arise via homoclinic bifurcations in the traveling wave equations. As the background concentration of IP
3 is increased, the wave speed increases, and for some values of the IP
3 concentration, the initial pulse gives rise to secondary pulses that travel in both directions. This can give rise to irregular spatio-temporal behavior, or to trains of pulses. In the simpler model, these secondary waves are related to the presence of a T-point, a heteroclinic cycle, and an associated spiral of homoclinic orbits, which terminate the branch of homoclinic orbits.</description><subject>Bifurcation (mathematics)</subject><subject>Bifurcation theory</subject><subject>Calcium waves</subject><subject>Cells</subject><subject>Electromagnetic wave propagation</subject><subject>Homoclinic bifurcations</subject><subject>Inositol trisphosphate receptor</subject><subject>Mathematical model</subject><subject>Mathematical models</subject><subject>Pancreatic acinar cells</subject><subject>T-point</subject><subject>Traveling waves</subject><issn>0167-2789</issn><issn>1872-8022</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LxDAQhoMouK7-BCEn0UN1krRN6kVk8QsWPLiewzRNJdJN1qRV9t_b_cCrl_lg3neYeQg5Z3DNgJU3b2OQGZequgS4AmCgMnZAJkxJning_JBM_iTH5CSlTxhVUsgJqRcRv23n_Af9GYtEQ0sNdsYNS-o8XaE30WLvDEXjPEZqbNelW7oMje2oCT71cTC9C56ib2jt2iEa3PfYrZNLp-SoxS7Zs32ekvfHh8XsOZu_Pr3M7ueZEUL1GUPTKi5bWYu8Bq5sUYFCwSpsC1GKqlRVVaKqa1DNOGxGU1mWICWyKm-gElNysdu7iuFrsKnXS5c256K3YUias7woeK5GYbETmhhSirbVq-iWGNeagd4Q1VuieoNLA-gtUc1G393OZ8cvvp2NOhlnvbGNi9b0ugnunw2_evF9_A</recordid><startdate>20001015</startdate><enddate>20001015</enddate><creator>Sneyd, James</creator><creator>LeBeau, Andrew</creator><creator>Yule, David</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20001015</creationdate><title>Traveling waves of calcium in pancreatic acinar cells: model construction and bifurcation analysis</title><author>Sneyd, James ; LeBeau, Andrew ; Yule, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c338t-1acf827f7b34b028e5908a319af5363968996a8bb08d8e5d338666077a194d093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Bifurcation (mathematics)</topic><topic>Bifurcation theory</topic><topic>Calcium waves</topic><topic>Cells</topic><topic>Electromagnetic wave propagation</topic><topic>Homoclinic bifurcations</topic><topic>Inositol trisphosphate receptor</topic><topic>Mathematical model</topic><topic>Mathematical models</topic><topic>Pancreatic acinar cells</topic><topic>T-point</topic><topic>Traveling waves</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sneyd, James</creatorcontrib><creatorcontrib>LeBeau, Andrew</creatorcontrib><creatorcontrib>Yule, David</creatorcontrib><collection>CrossRef</collection><jtitle>Physica. D</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sneyd, James</au><au>LeBeau, Andrew</au><au>Yule, David</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Traveling waves of calcium in pancreatic acinar cells: model construction and bifurcation analysis</atitle><jtitle>Physica. D</jtitle><date>2000-10-15</date><risdate>2000</risdate><volume>145</volume><issue>1</issue><spage>158</spage><epage>179</epage><pages>158-179</pages><issn>0167-2789</issn><eissn>1872-8022</eissn><abstract>We construct and study a model for intracellular calcium wave propagation, with particular attention to pancreatic acinar cells. The model is based on a model of the inositol trisphosphate (IP
3) receptor, which assumes that calcium modulates the binding affinity of IP
3 to the receptor. Two versions of the model, one simpler than the other, are studied numerically. In both versions, solitary waves in the excitable regime arise via homoclinic bifurcations in the traveling wave equations. As the background concentration of IP
3 is increased, the wave speed increases, and for some values of the IP
3 concentration, the initial pulse gives rise to secondary pulses that travel in both directions. This can give rise to irregular spatio-temporal behavior, or to trains of pulses. In the simpler model, these secondary waves are related to the presence of a T-point, a heteroclinic cycle, and an associated spiral of homoclinic orbits, which terminate the branch of homoclinic orbits.</abstract><pub>Elsevier B.V</pub><doi>10.1016/S0167-2789(00)00108-1</doi><tpages>22</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0167-2789 |
ispartof | Physica. D, 2000-10, Vol.145 (1), p.158-179 |
issn | 0167-2789 1872-8022 |
language | eng |
recordid | cdi_proquest_miscellaneous_21455248 |
source | Elsevier ScienceDirect Journals |
subjects | Bifurcation (mathematics) Bifurcation theory Calcium waves Cells Electromagnetic wave propagation Homoclinic bifurcations Inositol trisphosphate receptor Mathematical model Mathematical models Pancreatic acinar cells T-point Traveling waves |
title | Traveling waves of calcium in pancreatic acinar cells: model construction and bifurcation analysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T08%3A28%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Traveling%20waves%20of%20calcium%20in%20pancreatic%20acinar%20cells:%20model%20construction%20and%20bifurcation%20analysis&rft.jtitle=Physica.%20D&rft.au=Sneyd,%20James&rft.date=2000-10-15&rft.volume=145&rft.issue=1&rft.spage=158&rft.epage=179&rft.pages=158-179&rft.issn=0167-2789&rft.eissn=1872-8022&rft_id=info:doi/10.1016/S0167-2789(00)00108-1&rft_dat=%3Cproquest_cross%3E512025%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=21455248&rft_id=info:pmid/&rft_els_id=S0167278900001081&rfr_iscdi=true |