Traveling waves of calcium in pancreatic acinar cells: model construction and bifurcation analysis

We construct and study a model for intracellular calcium wave propagation, with particular attention to pancreatic acinar cells. The model is based on a model of the inositol trisphosphate (IP 3) receptor, which assumes that calcium modulates the binding affinity of IP 3 to the receptor. Two version...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physica. D 2000-10, Vol.145 (1), p.158-179
Hauptverfasser: Sneyd, James, LeBeau, Andrew, Yule, David
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 179
container_issue 1
container_start_page 158
container_title Physica. D
container_volume 145
creator Sneyd, James
LeBeau, Andrew
Yule, David
description We construct and study a model for intracellular calcium wave propagation, with particular attention to pancreatic acinar cells. The model is based on a model of the inositol trisphosphate (IP 3) receptor, which assumes that calcium modulates the binding affinity of IP 3 to the receptor. Two versions of the model, one simpler than the other, are studied numerically. In both versions, solitary waves in the excitable regime arise via homoclinic bifurcations in the traveling wave equations. As the background concentration of IP 3 is increased, the wave speed increases, and for some values of the IP 3 concentration, the initial pulse gives rise to secondary pulses that travel in both directions. This can give rise to irregular spatio-temporal behavior, or to trains of pulses. In the simpler model, these secondary waves are related to the presence of a T-point, a heteroclinic cycle, and an associated spiral of homoclinic orbits, which terminate the branch of homoclinic orbits.
doi_str_mv 10.1016/S0167-2789(00)00108-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_21455248</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167278900001081</els_id><sourcerecordid>512025</sourcerecordid><originalsourceid>FETCH-LOGICAL-c338t-1acf827f7b34b028e5908a319af5363968996a8bb08d8e5d338666077a194d093</originalsourceid><addsrcrecordid>eNqFkE1LxDAQhoMouK7-BCEn0UN1krRN6kVk8QsWPLiewzRNJdJN1qRV9t_b_cCrl_lg3neYeQg5Z3DNgJU3b2OQGZequgS4AmCgMnZAJkxJning_JBM_iTH5CSlTxhVUsgJqRcRv23n_Af9GYtEQ0sNdsYNS-o8XaE30WLvDEXjPEZqbNelW7oMje2oCT71cTC9C56ib2jt2iEa3PfYrZNLp-SoxS7Zs32ekvfHh8XsOZu_Pr3M7ueZEUL1GUPTKi5bWYu8Bq5sUYFCwSpsC1GKqlRVVaKqa1DNOGxGU1mWICWyKm-gElNysdu7iuFrsKnXS5c256K3YUias7woeK5GYbETmhhSirbVq-iWGNeagd4Q1VuieoNLA-gtUc1G393OZ8cvvp2NOhlnvbGNi9b0ugnunw2_evF9_A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>21455248</pqid></control><display><type>article</type><title>Traveling waves of calcium in pancreatic acinar cells: model construction and bifurcation analysis</title><source>Elsevier ScienceDirect Journals</source><creator>Sneyd, James ; LeBeau, Andrew ; Yule, David</creator><creatorcontrib>Sneyd, James ; LeBeau, Andrew ; Yule, David</creatorcontrib><description>We construct and study a model for intracellular calcium wave propagation, with particular attention to pancreatic acinar cells. The model is based on a model of the inositol trisphosphate (IP 3) receptor, which assumes that calcium modulates the binding affinity of IP 3 to the receptor. Two versions of the model, one simpler than the other, are studied numerically. In both versions, solitary waves in the excitable regime arise via homoclinic bifurcations in the traveling wave equations. As the background concentration of IP 3 is increased, the wave speed increases, and for some values of the IP 3 concentration, the initial pulse gives rise to secondary pulses that travel in both directions. This can give rise to irregular spatio-temporal behavior, or to trains of pulses. In the simpler model, these secondary waves are related to the presence of a T-point, a heteroclinic cycle, and an associated spiral of homoclinic orbits, which terminate the branch of homoclinic orbits.</description><identifier>ISSN: 0167-2789</identifier><identifier>EISSN: 1872-8022</identifier><identifier>DOI: 10.1016/S0167-2789(00)00108-1</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Bifurcation (mathematics) ; Bifurcation theory ; Calcium waves ; Cells ; Electromagnetic wave propagation ; Homoclinic bifurcations ; Inositol trisphosphate receptor ; Mathematical model ; Mathematical models ; Pancreatic acinar cells ; T-point ; Traveling waves</subject><ispartof>Physica. D, 2000-10, Vol.145 (1), p.158-179</ispartof><rights>2000 Elsevier Science B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c338t-1acf827f7b34b028e5908a319af5363968996a8bb08d8e5d338666077a194d093</citedby><cites>FETCH-LOGICAL-c338t-1acf827f7b34b028e5908a319af5363968996a8bb08d8e5d338666077a194d093</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0167-2789(00)00108-1$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids></links><search><creatorcontrib>Sneyd, James</creatorcontrib><creatorcontrib>LeBeau, Andrew</creatorcontrib><creatorcontrib>Yule, David</creatorcontrib><title>Traveling waves of calcium in pancreatic acinar cells: model construction and bifurcation analysis</title><title>Physica. D</title><description>We construct and study a model for intracellular calcium wave propagation, with particular attention to pancreatic acinar cells. The model is based on a model of the inositol trisphosphate (IP 3) receptor, which assumes that calcium modulates the binding affinity of IP 3 to the receptor. Two versions of the model, one simpler than the other, are studied numerically. In both versions, solitary waves in the excitable regime arise via homoclinic bifurcations in the traveling wave equations. As the background concentration of IP 3 is increased, the wave speed increases, and for some values of the IP 3 concentration, the initial pulse gives rise to secondary pulses that travel in both directions. This can give rise to irregular spatio-temporal behavior, or to trains of pulses. In the simpler model, these secondary waves are related to the presence of a T-point, a heteroclinic cycle, and an associated spiral of homoclinic orbits, which terminate the branch of homoclinic orbits.</description><subject>Bifurcation (mathematics)</subject><subject>Bifurcation theory</subject><subject>Calcium waves</subject><subject>Cells</subject><subject>Electromagnetic wave propagation</subject><subject>Homoclinic bifurcations</subject><subject>Inositol trisphosphate receptor</subject><subject>Mathematical model</subject><subject>Mathematical models</subject><subject>Pancreatic acinar cells</subject><subject>T-point</subject><subject>Traveling waves</subject><issn>0167-2789</issn><issn>1872-8022</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LxDAQhoMouK7-BCEn0UN1krRN6kVk8QsWPLiewzRNJdJN1qRV9t_b_cCrl_lg3neYeQg5Z3DNgJU3b2OQGZequgS4AmCgMnZAJkxJning_JBM_iTH5CSlTxhVUsgJqRcRv23n_Af9GYtEQ0sNdsYNS-o8XaE30WLvDEXjPEZqbNelW7oMje2oCT71cTC9C56ib2jt2iEa3PfYrZNLp-SoxS7Zs32ekvfHh8XsOZu_Pr3M7ueZEUL1GUPTKi5bWYu8Bq5sUYFCwSpsC1GKqlRVVaKqa1DNOGxGU1mWICWyKm-gElNysdu7iuFrsKnXS5c256K3YUias7woeK5GYbETmhhSirbVq-iWGNeagd4Q1VuieoNLA-gtUc1G393OZ8cvvp2NOhlnvbGNi9b0ugnunw2_evF9_A</recordid><startdate>20001015</startdate><enddate>20001015</enddate><creator>Sneyd, James</creator><creator>LeBeau, Andrew</creator><creator>Yule, David</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20001015</creationdate><title>Traveling waves of calcium in pancreatic acinar cells: model construction and bifurcation analysis</title><author>Sneyd, James ; LeBeau, Andrew ; Yule, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c338t-1acf827f7b34b028e5908a319af5363968996a8bb08d8e5d338666077a194d093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Bifurcation (mathematics)</topic><topic>Bifurcation theory</topic><topic>Calcium waves</topic><topic>Cells</topic><topic>Electromagnetic wave propagation</topic><topic>Homoclinic bifurcations</topic><topic>Inositol trisphosphate receptor</topic><topic>Mathematical model</topic><topic>Mathematical models</topic><topic>Pancreatic acinar cells</topic><topic>T-point</topic><topic>Traveling waves</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sneyd, James</creatorcontrib><creatorcontrib>LeBeau, Andrew</creatorcontrib><creatorcontrib>Yule, David</creatorcontrib><collection>CrossRef</collection><jtitle>Physica. D</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sneyd, James</au><au>LeBeau, Andrew</au><au>Yule, David</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Traveling waves of calcium in pancreatic acinar cells: model construction and bifurcation analysis</atitle><jtitle>Physica. D</jtitle><date>2000-10-15</date><risdate>2000</risdate><volume>145</volume><issue>1</issue><spage>158</spage><epage>179</epage><pages>158-179</pages><issn>0167-2789</issn><eissn>1872-8022</eissn><abstract>We construct and study a model for intracellular calcium wave propagation, with particular attention to pancreatic acinar cells. The model is based on a model of the inositol trisphosphate (IP 3) receptor, which assumes that calcium modulates the binding affinity of IP 3 to the receptor. Two versions of the model, one simpler than the other, are studied numerically. In both versions, solitary waves in the excitable regime arise via homoclinic bifurcations in the traveling wave equations. As the background concentration of IP 3 is increased, the wave speed increases, and for some values of the IP 3 concentration, the initial pulse gives rise to secondary pulses that travel in both directions. This can give rise to irregular spatio-temporal behavior, or to trains of pulses. In the simpler model, these secondary waves are related to the presence of a T-point, a heteroclinic cycle, and an associated spiral of homoclinic orbits, which terminate the branch of homoclinic orbits.</abstract><pub>Elsevier B.V</pub><doi>10.1016/S0167-2789(00)00108-1</doi><tpages>22</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0167-2789
ispartof Physica. D, 2000-10, Vol.145 (1), p.158-179
issn 0167-2789
1872-8022
language eng
recordid cdi_proquest_miscellaneous_21455248
source Elsevier ScienceDirect Journals
subjects Bifurcation (mathematics)
Bifurcation theory
Calcium waves
Cells
Electromagnetic wave propagation
Homoclinic bifurcations
Inositol trisphosphate receptor
Mathematical model
Mathematical models
Pancreatic acinar cells
T-point
Traveling waves
title Traveling waves of calcium in pancreatic acinar cells: model construction and bifurcation analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T08%3A28%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Traveling%20waves%20of%20calcium%20in%20pancreatic%20acinar%20cells:%20model%20construction%20and%20bifurcation%20analysis&rft.jtitle=Physica.%20D&rft.au=Sneyd,%20James&rft.date=2000-10-15&rft.volume=145&rft.issue=1&rft.spage=158&rft.epage=179&rft.pages=158-179&rft.issn=0167-2789&rft.eissn=1872-8022&rft_id=info:doi/10.1016/S0167-2789(00)00108-1&rft_dat=%3Cproquest_cross%3E512025%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=21455248&rft_id=info:pmid/&rft_els_id=S0167278900001081&rfr_iscdi=true