Pattern recognition methods and applications in biomedical magnetic resonance

Multivariate statistical methods, sometimes termed as chemometrics or bio-informatics, have been used to extract information from high resolution nuclear magnetic resonance (NMR) spectra of biological samples. A promising approach for releasing information in such complex data sets lies in the power...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Progress in nuclear magnetic resonance spectroscopy 2001-07, Vol.39 (1), p.1-40
Hauptverfasser: Lindon, J.C., Holmes, E., Nicholson, J.K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 40
container_issue 1
container_start_page 1
container_title Progress in nuclear magnetic resonance spectroscopy
container_volume 39
creator Lindon, J.C.
Holmes, E.
Nicholson, J.K.
description Multivariate statistical methods, sometimes termed as chemometrics or bio-informatics, have been used to extract information from high resolution nuclear magnetic resonance (NMR) spectra of biological samples. A promising approach for releasing information in such complex data sets lies in the power of computer pattern recognition algorithms. Thus, the combination of NMR spectroscopy with pattern recognition methods has the potential for generating relevant information and production of a significant knowledge base in many areas including understanding disease processes, assessing the effectiveness of therapies, and evaluating the side effects of drugs.
doi_str_mv 10.1016/S0079-6565(00)00036-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_21453133</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>578074</sourcerecordid><originalsourceid>FETCH-LOGICAL-c348t-cb938a3dd256443085f946f022eb06cd19384347a6060dfb9bfdd3be1877e2703</originalsourceid><addsrcrecordid>eNo9kEtLxDAUhbNQcBz9CUJWoovqTfNou5TBFygK6jqkye0YaZOadBb-ezsz4urCd865i4-QMwZXDJi6fgOomkJJJS8ALgGAq0IckMU_PiLHOX_NgVRltSDPr2aaMAWa0MZ18JOPgQ44fUaXqQmOmnHsvTVbnqkPtPVxQDeTng5mHXDydt7mGEyweEIOO9NnPP27S_Jxd_u-eiieXu4fVzdPheWingrbNrw23LlSKiE41LJrhOqgLLEFZR2bY8FFZRQocF3btJ1zvEVWVxWWFfAlOd__HVP83mCe9OCzxb43AeMm65IJyRnnc1HuizbFnBN2ekx-MOlHM9BbYXonTG_NaAC9E6YF_wV9DWEd</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>21453133</pqid></control><display><type>article</type><title>Pattern recognition methods and applications in biomedical magnetic resonance</title><source>Access via ScienceDirect (Elsevier)</source><creator>Lindon, J.C. ; Holmes, E. ; Nicholson, J.K.</creator><creatorcontrib>Lindon, J.C. ; Holmes, E. ; Nicholson, J.K.</creatorcontrib><description>Multivariate statistical methods, sometimes termed as chemometrics or bio-informatics, have been used to extract information from high resolution nuclear magnetic resonance (NMR) spectra of biological samples. A promising approach for releasing information in such complex data sets lies in the power of computer pattern recognition algorithms. Thus, the combination of NMR spectroscopy with pattern recognition methods has the potential for generating relevant information and production of a significant knowledge base in many areas including understanding disease processes, assessing the effectiveness of therapies, and evaluating the side effects of drugs.</description><identifier>ISSN: 0079-6565</identifier><identifier>DOI: 10.1016/S0079-6565(00)00036-4</identifier><language>eng</language><subject>Algorithms ; Knowledge based systems ; Medical computing ; Medical imaging ; Pattern recognition ; Statistical methods</subject><ispartof>Progress in nuclear magnetic resonance spectroscopy, 2001-07, Vol.39 (1), p.1-40</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c348t-cb938a3dd256443085f946f022eb06cd19384347a6060dfb9bfdd3be1877e2703</citedby><cites>FETCH-LOGICAL-c348t-cb938a3dd256443085f946f022eb06cd19384347a6060dfb9bfdd3be1877e2703</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27926,27927</link.rule.ids></links><search><creatorcontrib>Lindon, J.C.</creatorcontrib><creatorcontrib>Holmes, E.</creatorcontrib><creatorcontrib>Nicholson, J.K.</creatorcontrib><title>Pattern recognition methods and applications in biomedical magnetic resonance</title><title>Progress in nuclear magnetic resonance spectroscopy</title><description>Multivariate statistical methods, sometimes termed as chemometrics or bio-informatics, have been used to extract information from high resolution nuclear magnetic resonance (NMR) spectra of biological samples. A promising approach for releasing information in such complex data sets lies in the power of computer pattern recognition algorithms. Thus, the combination of NMR spectroscopy with pattern recognition methods has the potential for generating relevant information and production of a significant knowledge base in many areas including understanding disease processes, assessing the effectiveness of therapies, and evaluating the side effects of drugs.</description><subject>Algorithms</subject><subject>Knowledge based systems</subject><subject>Medical computing</subject><subject>Medical imaging</subject><subject>Pattern recognition</subject><subject>Statistical methods</subject><issn>0079-6565</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><recordid>eNo9kEtLxDAUhbNQcBz9CUJWoovqTfNou5TBFygK6jqkye0YaZOadBb-ezsz4urCd865i4-QMwZXDJi6fgOomkJJJS8ALgGAq0IckMU_PiLHOX_NgVRltSDPr2aaMAWa0MZ18JOPgQ44fUaXqQmOmnHsvTVbnqkPtPVxQDeTng5mHXDydt7mGEyweEIOO9NnPP27S_Jxd_u-eiieXu4fVzdPheWingrbNrw23LlSKiE41LJrhOqgLLEFZR2bY8FFZRQocF3btJ1zvEVWVxWWFfAlOd__HVP83mCe9OCzxb43AeMm65IJyRnnc1HuizbFnBN2ekx-MOlHM9BbYXonTG_NaAC9E6YF_wV9DWEd</recordid><startdate>20010702</startdate><enddate>20010702</enddate><creator>Lindon, J.C.</creator><creator>Holmes, E.</creator><creator>Nicholson, J.K.</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20010702</creationdate><title>Pattern recognition methods and applications in biomedical magnetic resonance</title><author>Lindon, J.C. ; Holmes, E. ; Nicholson, J.K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c348t-cb938a3dd256443085f946f022eb06cd19384347a6060dfb9bfdd3be1877e2703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Algorithms</topic><topic>Knowledge based systems</topic><topic>Medical computing</topic><topic>Medical imaging</topic><topic>Pattern recognition</topic><topic>Statistical methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lindon, J.C.</creatorcontrib><creatorcontrib>Holmes, E.</creatorcontrib><creatorcontrib>Nicholson, J.K.</creatorcontrib><collection>CrossRef</collection><jtitle>Progress in nuclear magnetic resonance spectroscopy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lindon, J.C.</au><au>Holmes, E.</au><au>Nicholson, J.K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pattern recognition methods and applications in biomedical magnetic resonance</atitle><jtitle>Progress in nuclear magnetic resonance spectroscopy</jtitle><date>2001-07-02</date><risdate>2001</risdate><volume>39</volume><issue>1</issue><spage>1</spage><epage>40</epage><pages>1-40</pages><issn>0079-6565</issn><abstract>Multivariate statistical methods, sometimes termed as chemometrics or bio-informatics, have been used to extract information from high resolution nuclear magnetic resonance (NMR) spectra of biological samples. A promising approach for releasing information in such complex data sets lies in the power of computer pattern recognition algorithms. Thus, the combination of NMR spectroscopy with pattern recognition methods has the potential for generating relevant information and production of a significant knowledge base in many areas including understanding disease processes, assessing the effectiveness of therapies, and evaluating the side effects of drugs.</abstract><doi>10.1016/S0079-6565(00)00036-4</doi><tpages>40</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0079-6565
ispartof Progress in nuclear magnetic resonance spectroscopy, 2001-07, Vol.39 (1), p.1-40
issn 0079-6565
language eng
recordid cdi_proquest_miscellaneous_21453133
source Access via ScienceDirect (Elsevier)
subjects Algorithms
Knowledge based systems
Medical computing
Medical imaging
Pattern recognition
Statistical methods
title Pattern recognition methods and applications in biomedical magnetic resonance
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T06%3A17%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pattern%20recognition%20methods%20and%20applications%20in%20biomedical%20magnetic%20resonance&rft.jtitle=Progress%20in%20nuclear%20magnetic%20resonance%20spectroscopy&rft.au=Lindon,%20J.C.&rft.date=2001-07-02&rft.volume=39&rft.issue=1&rft.spage=1&rft.epage=40&rft.pages=1-40&rft.issn=0079-6565&rft_id=info:doi/10.1016/S0079-6565(00)00036-4&rft_dat=%3Cproquest_cross%3E578074%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=21453133&rft_id=info:pmid/&rfr_iscdi=true