Immobilization of active α-chymotrypsin on RF-plasma-functionalized polymer surfaces
Various polymeric surfaces (polyester, polyethylene, polystyrene) were functionalized under oxygen and dichlorosilane‐RF‐cold‐plasma environments and were employed as substrates for further in situ derivatization reactions and immobilization of α‐Chymotrypsin. The nature and morphology of the deriva...
Gespeichert in:
Veröffentlicht in: | Journal of applied polymer science 2000-12, Vol.78 (10), p.1783-1796 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1796 |
---|---|
container_issue | 10 |
container_start_page | 1783 |
container_title | Journal of applied polymer science |
container_volume | 78 |
creator | Ganapathy, R. Manolache, S. Sarmadi, M. Simonsick Jr, W. J. Denes, F. |
description | Various polymeric surfaces (polyester, polyethylene, polystyrene) were functionalized under oxygen and dichlorosilane‐RF‐cold‐plasma environments and were employed as substrates for further in situ derivatization reactions and immobilization of α‐Chymotrypsin. The nature and morphology of the derivatized substrates and the substrates with immobilized enzymes were analyzed using survey and high‐resolution X‐ray photoelectron spectroscopy, attenuated total reflectance‐fourier transform infrared (ATR‐FTIR), laser desorption fourier transform ion cyclotron resonance mass spectrometry, chemical derivatization, and atomic force microscopy (AFM) techniques. It was demonstrated that the tacticity of the polystyrene substrate did not notably influence the activity of the immobilized enzyme, however, spacer molecules intercalated between the polymeric substrates (e.g., polyethylene) and the enzyme significantly increased the enzyme activity (comparable with that of the free enzyme). Computer‐aided conformational modeling of the substrate‐spacer systems indicated that the longer the spacer chain, the greater the mobility of the enzyme. It is suggested that the greater mobility of the enzyme molecules is responsible for the enhanced activity. It has also been shown that the stability of the immobilized enzyme systems was good; they retained their activity during several washing/assay cycles. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 78: 1783–1796, 2000 |
doi_str_mv | 10.1002/1097-4628(20001205)78:10<1783::AID-APP100>3.0.CO;2-# |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_21445506</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>511943</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4030-3e5e2b2aac24c161a6bc75f3e341becc226e9cf268f2c7d0cea9b592edc16e7a3</originalsourceid><addsrcrecordid>eNqVkF2LEzEUhoMoWFf_w8CC6EVqPmYmM3URStfW6mKXxUXw5pBJTzA6XyZTdfxX_hF_k6mtvfLGqxDOe57D-xBywdmUMyaecVYqmuaieCIYY1yw7KkqZpxdcFXI2Wy-vqTz6-sYfSGnbLrYPBf0_A6ZnNbukknEcFqUZXafPAjhU6TwjOUTcrtumq5ytfuhB9e1SWcTbQb3FZNfP6n5ODbd4Mc-uDhpk5sl7WsdGk3trjX7vI6LuE36rh4b9EnYeasNhofkntV1wEfH94zcLl--W7yiV5vVejG_oiZlklGJGYpKaG1EanjOdV4ZlVmJMuUVGiNEjqWxIi-sMGrLDOqyykqB25hGpeUZeXzg9r77ssMwQOOCwbrWLXa7AIKnaRZ7xuDNIWh8F4JHC713jfYjcAZ7x7CXBXtZ8NcxqOLPNDoGiI7h4BgkMFhsQETo-fG6DkbX1uvWuHAiF0zEAvLU_ZurcfzPu_84e_xHLj1wXRjw-4mr_WfIlVQZvH-7ArF6c_lhmb8GJn8DkCiqHg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>21445506</pqid></control><display><type>article</type><title>Immobilization of active α-chymotrypsin on RF-plasma-functionalized polymer surfaces</title><source>Wiley Journals</source><creator>Ganapathy, R. ; Manolache, S. ; Sarmadi, M. ; Simonsick Jr, W. J. ; Denes, F.</creator><creatorcontrib>Ganapathy, R. ; Manolache, S. ; Sarmadi, M. ; Simonsick Jr, W. J. ; Denes, F.</creatorcontrib><description>Various polymeric surfaces (polyester, polyethylene, polystyrene) were functionalized under oxygen and dichlorosilane‐RF‐cold‐plasma environments and were employed as substrates for further in situ derivatization reactions and immobilization of α‐Chymotrypsin. The nature and morphology of the derivatized substrates and the substrates with immobilized enzymes were analyzed using survey and high‐resolution X‐ray photoelectron spectroscopy, attenuated total reflectance‐fourier transform infrared (ATR‐FTIR), laser desorption fourier transform ion cyclotron resonance mass spectrometry, chemical derivatization, and atomic force microscopy (AFM) techniques. It was demonstrated that the tacticity of the polystyrene substrate did not notably influence the activity of the immobilized enzyme, however, spacer molecules intercalated between the polymeric substrates (e.g., polyethylene) and the enzyme significantly increased the enzyme activity (comparable with that of the free enzyme). Computer‐aided conformational modeling of the substrate‐spacer systems indicated that the longer the spacer chain, the greater the mobility of the enzyme. It is suggested that the greater mobility of the enzyme molecules is responsible for the enhanced activity. It has also been shown that the stability of the immobilized enzyme systems was good; they retained their activity during several washing/assay cycles. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 78: 1783–1796, 2000</description><identifier>ISSN: 0021-8995</identifier><identifier>EISSN: 1097-4628</identifier><identifier>DOI: 10.1002/1097-4628(20001205)78:10<1783::AID-APP100>3.0.CO;2-#</identifier><identifier>CODEN: JAPNAB</identifier><language>eng</language><publisher>New York: John Wiley & Sons, Inc</publisher><subject>Applied sciences ; Atomic force microscopy ; Bioassay ; Biological and medical sciences ; Biotechnology ; Enzyme immobilization ; Exact sciences and technology ; Fourier transform infrared spectroscopy ; Fundamental and applied biological sciences. Psychology ; Immobilization of enzymes and other molecules ; Immobilization techniques ; Intercalation compounds ; Mass spectrometry ; Methods. Procedures. Technologies ; Molecular dynamics ; Morphology ; Organic polymers ; Physicochemistry of polymers ; plasma functionalized surface ; Properties and characterization ; spacer ; Special properties (catalyst, reagent or carrier) ; Substrates ; surface morphology ; X ray photoelectron spectroscopy ; α-Chymotrypsin</subject><ispartof>Journal of applied polymer science, 2000-12, Vol.78 (10), p.1783-1796</ispartof><rights>Copyright © 2000 John Wiley & Sons, Inc.</rights><rights>2001 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c4030-3e5e2b2aac24c161a6bc75f3e341becc226e9cf268f2c7d0cea9b592edc16e7a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2F1097-4628%2820001205%2978%3A10%3C1783%3A%3AAID-APP100%3E3.0.CO%3B2-%23$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2F1097-4628%2820001205%2978%3A10%3C1783%3A%3AAID-APP100%3E3.0.CO%3B2-%23$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=802226$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Ganapathy, R.</creatorcontrib><creatorcontrib>Manolache, S.</creatorcontrib><creatorcontrib>Sarmadi, M.</creatorcontrib><creatorcontrib>Simonsick Jr, W. J.</creatorcontrib><creatorcontrib>Denes, F.</creatorcontrib><title>Immobilization of active α-chymotrypsin on RF-plasma-functionalized polymer surfaces</title><title>Journal of applied polymer science</title><addtitle>J. Appl. Polym. Sci</addtitle><description>Various polymeric surfaces (polyester, polyethylene, polystyrene) were functionalized under oxygen and dichlorosilane‐RF‐cold‐plasma environments and were employed as substrates for further in situ derivatization reactions and immobilization of α‐Chymotrypsin. The nature and morphology of the derivatized substrates and the substrates with immobilized enzymes were analyzed using survey and high‐resolution X‐ray photoelectron spectroscopy, attenuated total reflectance‐fourier transform infrared (ATR‐FTIR), laser desorption fourier transform ion cyclotron resonance mass spectrometry, chemical derivatization, and atomic force microscopy (AFM) techniques. It was demonstrated that the tacticity of the polystyrene substrate did not notably influence the activity of the immobilized enzyme, however, spacer molecules intercalated between the polymeric substrates (e.g., polyethylene) and the enzyme significantly increased the enzyme activity (comparable with that of the free enzyme). Computer‐aided conformational modeling of the substrate‐spacer systems indicated that the longer the spacer chain, the greater the mobility of the enzyme. It is suggested that the greater mobility of the enzyme molecules is responsible for the enhanced activity. It has also been shown that the stability of the immobilized enzyme systems was good; they retained their activity during several washing/assay cycles. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 78: 1783–1796, 2000</description><subject>Applied sciences</subject><subject>Atomic force microscopy</subject><subject>Bioassay</subject><subject>Biological and medical sciences</subject><subject>Biotechnology</subject><subject>Enzyme immobilization</subject><subject>Exact sciences and technology</subject><subject>Fourier transform infrared spectroscopy</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Immobilization of enzymes and other molecules</subject><subject>Immobilization techniques</subject><subject>Intercalation compounds</subject><subject>Mass spectrometry</subject><subject>Methods. Procedures. Technologies</subject><subject>Molecular dynamics</subject><subject>Morphology</subject><subject>Organic polymers</subject><subject>Physicochemistry of polymers</subject><subject>plasma functionalized surface</subject><subject>Properties and characterization</subject><subject>spacer</subject><subject>Special properties (catalyst, reagent or carrier)</subject><subject>Substrates</subject><subject>surface morphology</subject><subject>X ray photoelectron spectroscopy</subject><subject>α-Chymotrypsin</subject><issn>0021-8995</issn><issn>1097-4628</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><recordid>eNqVkF2LEzEUhoMoWFf_w8CC6EVqPmYmM3URStfW6mKXxUXw5pBJTzA6XyZTdfxX_hF_k6mtvfLGqxDOe57D-xBywdmUMyaecVYqmuaieCIYY1yw7KkqZpxdcFXI2Wy-vqTz6-sYfSGnbLrYPBf0_A6ZnNbukknEcFqUZXafPAjhU6TwjOUTcrtumq5ytfuhB9e1SWcTbQb3FZNfP6n5ODbd4Mc-uDhpk5sl7WsdGk3trjX7vI6LuE36rh4b9EnYeasNhofkntV1wEfH94zcLl--W7yiV5vVejG_oiZlklGJGYpKaG1EanjOdV4ZlVmJMuUVGiNEjqWxIi-sMGrLDOqyykqB25hGpeUZeXzg9r77ssMwQOOCwbrWLXa7AIKnaRZ7xuDNIWh8F4JHC713jfYjcAZ7x7CXBXtZ8NcxqOLPNDoGiI7h4BgkMFhsQETo-fG6DkbX1uvWuHAiF0zEAvLU_ZurcfzPu_84e_xHLj1wXRjw-4mr_WfIlVQZvH-7ArF6c_lhmb8GJn8DkCiqHg</recordid><startdate>20001205</startdate><enddate>20001205</enddate><creator>Ganapathy, R.</creator><creator>Manolache, S.</creator><creator>Sarmadi, M.</creator><creator>Simonsick Jr, W. J.</creator><creator>Denes, F.</creator><general>John Wiley & Sons, Inc</general><general>Wiley</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20001205</creationdate><title>Immobilization of active α-chymotrypsin on RF-plasma-functionalized polymer surfaces</title><author>Ganapathy, R. ; Manolache, S. ; Sarmadi, M. ; Simonsick Jr, W. J. ; Denes, F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4030-3e5e2b2aac24c161a6bc75f3e341becc226e9cf268f2c7d0cea9b592edc16e7a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Applied sciences</topic><topic>Atomic force microscopy</topic><topic>Bioassay</topic><topic>Biological and medical sciences</topic><topic>Biotechnology</topic><topic>Enzyme immobilization</topic><topic>Exact sciences and technology</topic><topic>Fourier transform infrared spectroscopy</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Immobilization of enzymes and other molecules</topic><topic>Immobilization techniques</topic><topic>Intercalation compounds</topic><topic>Mass spectrometry</topic><topic>Methods. Procedures. Technologies</topic><topic>Molecular dynamics</topic><topic>Morphology</topic><topic>Organic polymers</topic><topic>Physicochemistry of polymers</topic><topic>plasma functionalized surface</topic><topic>Properties and characterization</topic><topic>spacer</topic><topic>Special properties (catalyst, reagent or carrier)</topic><topic>Substrates</topic><topic>surface morphology</topic><topic>X ray photoelectron spectroscopy</topic><topic>α-Chymotrypsin</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ganapathy, R.</creatorcontrib><creatorcontrib>Manolache, S.</creatorcontrib><creatorcontrib>Sarmadi, M.</creatorcontrib><creatorcontrib>Simonsick Jr, W. J.</creatorcontrib><creatorcontrib>Denes, F.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Journal of applied polymer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ganapathy, R.</au><au>Manolache, S.</au><au>Sarmadi, M.</au><au>Simonsick Jr, W. J.</au><au>Denes, F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Immobilization of active α-chymotrypsin on RF-plasma-functionalized polymer surfaces</atitle><jtitle>Journal of applied polymer science</jtitle><addtitle>J. Appl. Polym. Sci</addtitle><date>2000-12-05</date><risdate>2000</risdate><volume>78</volume><issue>10</issue><spage>1783</spage><epage>1796</epage><pages>1783-1796</pages><issn>0021-8995</issn><eissn>1097-4628</eissn><coden>JAPNAB</coden><abstract>Various polymeric surfaces (polyester, polyethylene, polystyrene) were functionalized under oxygen and dichlorosilane‐RF‐cold‐plasma environments and were employed as substrates for further in situ derivatization reactions and immobilization of α‐Chymotrypsin. The nature and morphology of the derivatized substrates and the substrates with immobilized enzymes were analyzed using survey and high‐resolution X‐ray photoelectron spectroscopy, attenuated total reflectance‐fourier transform infrared (ATR‐FTIR), laser desorption fourier transform ion cyclotron resonance mass spectrometry, chemical derivatization, and atomic force microscopy (AFM) techniques. It was demonstrated that the tacticity of the polystyrene substrate did not notably influence the activity of the immobilized enzyme, however, spacer molecules intercalated between the polymeric substrates (e.g., polyethylene) and the enzyme significantly increased the enzyme activity (comparable with that of the free enzyme). Computer‐aided conformational modeling of the substrate‐spacer systems indicated that the longer the spacer chain, the greater the mobility of the enzyme. It is suggested that the greater mobility of the enzyme molecules is responsible for the enhanced activity. It has also been shown that the stability of the immobilized enzyme systems was good; they retained their activity during several washing/assay cycles. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 78: 1783–1796, 2000</abstract><cop>New York</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1002/1097-4628(20001205)78:10<1783::AID-APP100>3.0.CO;2-#</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-8995 |
ispartof | Journal of applied polymer science, 2000-12, Vol.78 (10), p.1783-1796 |
issn | 0021-8995 1097-4628 |
language | eng |
recordid | cdi_proquest_miscellaneous_21445506 |
source | Wiley Journals |
subjects | Applied sciences Atomic force microscopy Bioassay Biological and medical sciences Biotechnology Enzyme immobilization Exact sciences and technology Fourier transform infrared spectroscopy Fundamental and applied biological sciences. Psychology Immobilization of enzymes and other molecules Immobilization techniques Intercalation compounds Mass spectrometry Methods. Procedures. Technologies Molecular dynamics Morphology Organic polymers Physicochemistry of polymers plasma functionalized surface Properties and characterization spacer Special properties (catalyst, reagent or carrier) Substrates surface morphology X ray photoelectron spectroscopy α-Chymotrypsin |
title | Immobilization of active α-chymotrypsin on RF-plasma-functionalized polymer surfaces |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T14%3A29%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Immobilization%20of%20active%20%CE%B1-chymotrypsin%20on%20RF-plasma-functionalized%20polymer%20surfaces&rft.jtitle=Journal%20of%20applied%20polymer%20science&rft.au=Ganapathy,%20R.&rft.date=2000-12-05&rft.volume=78&rft.issue=10&rft.spage=1783&rft.epage=1796&rft.pages=1783-1796&rft.issn=0021-8995&rft.eissn=1097-4628&rft.coden=JAPNAB&rft_id=info:doi/10.1002/1097-4628(20001205)78:10%3C1783::AID-APP100%3E3.0.CO;2-%23&rft_dat=%3Cproquest_cross%3E511943%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=21445506&rft_id=info:pmid/&rfr_iscdi=true |