Immobilization of active α-chymotrypsin on RF-plasma-functionalized polymer surfaces

Various polymeric surfaces (polyester, polyethylene, polystyrene) were functionalized under oxygen and dichlorosilane‐RF‐cold‐plasma environments and were employed as substrates for further in situ derivatization reactions and immobilization of α‐Chymotrypsin. The nature and morphology of the deriva...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied polymer science 2000-12, Vol.78 (10), p.1783-1796
Hauptverfasser: Ganapathy, R., Manolache, S., Sarmadi, M., Simonsick Jr, W. J., Denes, F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1796
container_issue 10
container_start_page 1783
container_title Journal of applied polymer science
container_volume 78
creator Ganapathy, R.
Manolache, S.
Sarmadi, M.
Simonsick Jr, W. J.
Denes, F.
description Various polymeric surfaces (polyester, polyethylene, polystyrene) were functionalized under oxygen and dichlorosilane‐RF‐cold‐plasma environments and were employed as substrates for further in situ derivatization reactions and immobilization of α‐Chymotrypsin. The nature and morphology of the derivatized substrates and the substrates with immobilized enzymes were analyzed using survey and high‐resolution X‐ray photoelectron spectroscopy, attenuated total reflectance‐fourier transform infrared (ATR‐FTIR), laser desorption fourier transform ion cyclotron resonance mass spectrometry, chemical derivatization, and atomic force microscopy (AFM) techniques. It was demonstrated that the tacticity of the polystyrene substrate did not notably influence the activity of the immobilized enzyme, however, spacer molecules intercalated between the polymeric substrates (e.g., polyethylene) and the enzyme significantly increased the enzyme activity (comparable with that of the free enzyme). Computer‐aided conformational modeling of the substrate‐spacer systems indicated that the longer the spacer chain, the greater the mobility of the enzyme. It is suggested that the greater mobility of the enzyme molecules is responsible for the enhanced activity. It has also been shown that the stability of the immobilized enzyme systems was good; they retained their activity during several washing/assay cycles. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 78: 1783–1796, 2000
doi_str_mv 10.1002/1097-4628(20001205)78:10<1783::AID-APP100>3.0.CO;2-#
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_21445506</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>511943</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4030-3e5e2b2aac24c161a6bc75f3e341becc226e9cf268f2c7d0cea9b592edc16e7a3</originalsourceid><addsrcrecordid>eNqVkF2LEzEUhoMoWFf_w8CC6EVqPmYmM3URStfW6mKXxUXw5pBJTzA6XyZTdfxX_hF_k6mtvfLGqxDOe57D-xBywdmUMyaecVYqmuaieCIYY1yw7KkqZpxdcFXI2Wy-vqTz6-sYfSGnbLrYPBf0_A6ZnNbukknEcFqUZXafPAjhU6TwjOUTcrtumq5ytfuhB9e1SWcTbQb3FZNfP6n5ODbd4Mc-uDhpk5sl7WsdGk3trjX7vI6LuE36rh4b9EnYeasNhofkntV1wEfH94zcLl--W7yiV5vVejG_oiZlklGJGYpKaG1EanjOdV4ZlVmJMuUVGiNEjqWxIi-sMGrLDOqyykqB25hGpeUZeXzg9r77ssMwQOOCwbrWLXa7AIKnaRZ7xuDNIWh8F4JHC713jfYjcAZ7x7CXBXtZ8NcxqOLPNDoGiI7h4BgkMFhsQETo-fG6DkbX1uvWuHAiF0zEAvLU_ZurcfzPu_84e_xHLj1wXRjw-4mr_WfIlVQZvH-7ArF6c_lhmb8GJn8DkCiqHg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>21445506</pqid></control><display><type>article</type><title>Immobilization of active α-chymotrypsin on RF-plasma-functionalized polymer surfaces</title><source>Wiley Journals</source><creator>Ganapathy, R. ; Manolache, S. ; Sarmadi, M. ; Simonsick Jr, W. J. ; Denes, F.</creator><creatorcontrib>Ganapathy, R. ; Manolache, S. ; Sarmadi, M. ; Simonsick Jr, W. J. ; Denes, F.</creatorcontrib><description>Various polymeric surfaces (polyester, polyethylene, polystyrene) were functionalized under oxygen and dichlorosilane‐RF‐cold‐plasma environments and were employed as substrates for further in situ derivatization reactions and immobilization of α‐Chymotrypsin. The nature and morphology of the derivatized substrates and the substrates with immobilized enzymes were analyzed using survey and high‐resolution X‐ray photoelectron spectroscopy, attenuated total reflectance‐fourier transform infrared (ATR‐FTIR), laser desorption fourier transform ion cyclotron resonance mass spectrometry, chemical derivatization, and atomic force microscopy (AFM) techniques. It was demonstrated that the tacticity of the polystyrene substrate did not notably influence the activity of the immobilized enzyme, however, spacer molecules intercalated between the polymeric substrates (e.g., polyethylene) and the enzyme significantly increased the enzyme activity (comparable with that of the free enzyme). Computer‐aided conformational modeling of the substrate‐spacer systems indicated that the longer the spacer chain, the greater the mobility of the enzyme. It is suggested that the greater mobility of the enzyme molecules is responsible for the enhanced activity. It has also been shown that the stability of the immobilized enzyme systems was good; they retained their activity during several washing/assay cycles. © 2000 John Wiley &amp; Sons, Inc. J Appl Polym Sci 78: 1783–1796, 2000</description><identifier>ISSN: 0021-8995</identifier><identifier>EISSN: 1097-4628</identifier><identifier>DOI: 10.1002/1097-4628(20001205)78:10&lt;1783::AID-APP100&gt;3.0.CO;2-#</identifier><identifier>CODEN: JAPNAB</identifier><language>eng</language><publisher>New York: John Wiley &amp; Sons, Inc</publisher><subject>Applied sciences ; Atomic force microscopy ; Bioassay ; Biological and medical sciences ; Biotechnology ; Enzyme immobilization ; Exact sciences and technology ; Fourier transform infrared spectroscopy ; Fundamental and applied biological sciences. Psychology ; Immobilization of enzymes and other molecules ; Immobilization techniques ; Intercalation compounds ; Mass spectrometry ; Methods. Procedures. Technologies ; Molecular dynamics ; Morphology ; Organic polymers ; Physicochemistry of polymers ; plasma functionalized surface ; Properties and characterization ; spacer ; Special properties (catalyst, reagent or carrier) ; Substrates ; surface morphology ; X ray photoelectron spectroscopy ; α-Chymotrypsin</subject><ispartof>Journal of applied polymer science, 2000-12, Vol.78 (10), p.1783-1796</ispartof><rights>Copyright © 2000 John Wiley &amp; Sons, Inc.</rights><rights>2001 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c4030-3e5e2b2aac24c161a6bc75f3e341becc226e9cf268f2c7d0cea9b592edc16e7a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2F1097-4628%2820001205%2978%3A10%3C1783%3A%3AAID-APP100%3E3.0.CO%3B2-%23$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2F1097-4628%2820001205%2978%3A10%3C1783%3A%3AAID-APP100%3E3.0.CO%3B2-%23$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=802226$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Ganapathy, R.</creatorcontrib><creatorcontrib>Manolache, S.</creatorcontrib><creatorcontrib>Sarmadi, M.</creatorcontrib><creatorcontrib>Simonsick Jr, W. J.</creatorcontrib><creatorcontrib>Denes, F.</creatorcontrib><title>Immobilization of active α-chymotrypsin on RF-plasma-functionalized polymer surfaces</title><title>Journal of applied polymer science</title><addtitle>J. Appl. Polym. Sci</addtitle><description>Various polymeric surfaces (polyester, polyethylene, polystyrene) were functionalized under oxygen and dichlorosilane‐RF‐cold‐plasma environments and were employed as substrates for further in situ derivatization reactions and immobilization of α‐Chymotrypsin. The nature and morphology of the derivatized substrates and the substrates with immobilized enzymes were analyzed using survey and high‐resolution X‐ray photoelectron spectroscopy, attenuated total reflectance‐fourier transform infrared (ATR‐FTIR), laser desorption fourier transform ion cyclotron resonance mass spectrometry, chemical derivatization, and atomic force microscopy (AFM) techniques. It was demonstrated that the tacticity of the polystyrene substrate did not notably influence the activity of the immobilized enzyme, however, spacer molecules intercalated between the polymeric substrates (e.g., polyethylene) and the enzyme significantly increased the enzyme activity (comparable with that of the free enzyme). Computer‐aided conformational modeling of the substrate‐spacer systems indicated that the longer the spacer chain, the greater the mobility of the enzyme. It is suggested that the greater mobility of the enzyme molecules is responsible for the enhanced activity. It has also been shown that the stability of the immobilized enzyme systems was good; they retained their activity during several washing/assay cycles. © 2000 John Wiley &amp; Sons, Inc. J Appl Polym Sci 78: 1783–1796, 2000</description><subject>Applied sciences</subject><subject>Atomic force microscopy</subject><subject>Bioassay</subject><subject>Biological and medical sciences</subject><subject>Biotechnology</subject><subject>Enzyme immobilization</subject><subject>Exact sciences and technology</subject><subject>Fourier transform infrared spectroscopy</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Immobilization of enzymes and other molecules</subject><subject>Immobilization techniques</subject><subject>Intercalation compounds</subject><subject>Mass spectrometry</subject><subject>Methods. Procedures. Technologies</subject><subject>Molecular dynamics</subject><subject>Morphology</subject><subject>Organic polymers</subject><subject>Physicochemistry of polymers</subject><subject>plasma functionalized surface</subject><subject>Properties and characterization</subject><subject>spacer</subject><subject>Special properties (catalyst, reagent or carrier)</subject><subject>Substrates</subject><subject>surface morphology</subject><subject>X ray photoelectron spectroscopy</subject><subject>α-Chymotrypsin</subject><issn>0021-8995</issn><issn>1097-4628</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><recordid>eNqVkF2LEzEUhoMoWFf_w8CC6EVqPmYmM3URStfW6mKXxUXw5pBJTzA6XyZTdfxX_hF_k6mtvfLGqxDOe57D-xBywdmUMyaecVYqmuaieCIYY1yw7KkqZpxdcFXI2Wy-vqTz6-sYfSGnbLrYPBf0_A6ZnNbukknEcFqUZXafPAjhU6TwjOUTcrtumq5ytfuhB9e1SWcTbQb3FZNfP6n5ODbd4Mc-uDhpk5sl7WsdGk3trjX7vI6LuE36rh4b9EnYeasNhofkntV1wEfH94zcLl--W7yiV5vVejG_oiZlklGJGYpKaG1EanjOdV4ZlVmJMuUVGiNEjqWxIi-sMGrLDOqyykqB25hGpeUZeXzg9r77ssMwQOOCwbrWLXa7AIKnaRZ7xuDNIWh8F4JHC713jfYjcAZ7x7CXBXtZ8NcxqOLPNDoGiI7h4BgkMFhsQETo-fG6DkbX1uvWuHAiF0zEAvLU_ZurcfzPu_84e_xHLj1wXRjw-4mr_WfIlVQZvH-7ArF6c_lhmb8GJn8DkCiqHg</recordid><startdate>20001205</startdate><enddate>20001205</enddate><creator>Ganapathy, R.</creator><creator>Manolache, S.</creator><creator>Sarmadi, M.</creator><creator>Simonsick Jr, W. J.</creator><creator>Denes, F.</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20001205</creationdate><title>Immobilization of active α-chymotrypsin on RF-plasma-functionalized polymer surfaces</title><author>Ganapathy, R. ; Manolache, S. ; Sarmadi, M. ; Simonsick Jr, W. J. ; Denes, F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4030-3e5e2b2aac24c161a6bc75f3e341becc226e9cf268f2c7d0cea9b592edc16e7a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Applied sciences</topic><topic>Atomic force microscopy</topic><topic>Bioassay</topic><topic>Biological and medical sciences</topic><topic>Biotechnology</topic><topic>Enzyme immobilization</topic><topic>Exact sciences and technology</topic><topic>Fourier transform infrared spectroscopy</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Immobilization of enzymes and other molecules</topic><topic>Immobilization techniques</topic><topic>Intercalation compounds</topic><topic>Mass spectrometry</topic><topic>Methods. Procedures. Technologies</topic><topic>Molecular dynamics</topic><topic>Morphology</topic><topic>Organic polymers</topic><topic>Physicochemistry of polymers</topic><topic>plasma functionalized surface</topic><topic>Properties and characterization</topic><topic>spacer</topic><topic>Special properties (catalyst, reagent or carrier)</topic><topic>Substrates</topic><topic>surface morphology</topic><topic>X ray photoelectron spectroscopy</topic><topic>α-Chymotrypsin</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ganapathy, R.</creatorcontrib><creatorcontrib>Manolache, S.</creatorcontrib><creatorcontrib>Sarmadi, M.</creatorcontrib><creatorcontrib>Simonsick Jr, W. J.</creatorcontrib><creatorcontrib>Denes, F.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Journal of applied polymer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ganapathy, R.</au><au>Manolache, S.</au><au>Sarmadi, M.</au><au>Simonsick Jr, W. J.</au><au>Denes, F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Immobilization of active α-chymotrypsin on RF-plasma-functionalized polymer surfaces</atitle><jtitle>Journal of applied polymer science</jtitle><addtitle>J. Appl. Polym. Sci</addtitle><date>2000-12-05</date><risdate>2000</risdate><volume>78</volume><issue>10</issue><spage>1783</spage><epage>1796</epage><pages>1783-1796</pages><issn>0021-8995</issn><eissn>1097-4628</eissn><coden>JAPNAB</coden><abstract>Various polymeric surfaces (polyester, polyethylene, polystyrene) were functionalized under oxygen and dichlorosilane‐RF‐cold‐plasma environments and were employed as substrates for further in situ derivatization reactions and immobilization of α‐Chymotrypsin. The nature and morphology of the derivatized substrates and the substrates with immobilized enzymes were analyzed using survey and high‐resolution X‐ray photoelectron spectroscopy, attenuated total reflectance‐fourier transform infrared (ATR‐FTIR), laser desorption fourier transform ion cyclotron resonance mass spectrometry, chemical derivatization, and atomic force microscopy (AFM) techniques. It was demonstrated that the tacticity of the polystyrene substrate did not notably influence the activity of the immobilized enzyme, however, spacer molecules intercalated between the polymeric substrates (e.g., polyethylene) and the enzyme significantly increased the enzyme activity (comparable with that of the free enzyme). Computer‐aided conformational modeling of the substrate‐spacer systems indicated that the longer the spacer chain, the greater the mobility of the enzyme. It is suggested that the greater mobility of the enzyme molecules is responsible for the enhanced activity. It has also been shown that the stability of the immobilized enzyme systems was good; they retained their activity during several washing/assay cycles. © 2000 John Wiley &amp; Sons, Inc. J Appl Polym Sci 78: 1783–1796, 2000</abstract><cop>New York</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/1097-4628(20001205)78:10&lt;1783::AID-APP100&gt;3.0.CO;2-#</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-8995
ispartof Journal of applied polymer science, 2000-12, Vol.78 (10), p.1783-1796
issn 0021-8995
1097-4628
language eng
recordid cdi_proquest_miscellaneous_21445506
source Wiley Journals
subjects Applied sciences
Atomic force microscopy
Bioassay
Biological and medical sciences
Biotechnology
Enzyme immobilization
Exact sciences and technology
Fourier transform infrared spectroscopy
Fundamental and applied biological sciences. Psychology
Immobilization of enzymes and other molecules
Immobilization techniques
Intercalation compounds
Mass spectrometry
Methods. Procedures. Technologies
Molecular dynamics
Morphology
Organic polymers
Physicochemistry of polymers
plasma functionalized surface
Properties and characterization
spacer
Special properties (catalyst, reagent or carrier)
Substrates
surface morphology
X ray photoelectron spectroscopy
α-Chymotrypsin
title Immobilization of active α-chymotrypsin on RF-plasma-functionalized polymer surfaces
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T14%3A29%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Immobilization%20of%20active%20%CE%B1-chymotrypsin%20on%20RF-plasma-functionalized%20polymer%20surfaces&rft.jtitle=Journal%20of%20applied%20polymer%20science&rft.au=Ganapathy,%20R.&rft.date=2000-12-05&rft.volume=78&rft.issue=10&rft.spage=1783&rft.epage=1796&rft.pages=1783-1796&rft.issn=0021-8995&rft.eissn=1097-4628&rft.coden=JAPNAB&rft_id=info:doi/10.1002/1097-4628(20001205)78:10%3C1783::AID-APP100%3E3.0.CO;2-%23&rft_dat=%3Cproquest_cross%3E511943%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=21445506&rft_id=info:pmid/&rfr_iscdi=true