Enhanced bioaccumulation of heavy metals by bacterial cells displaying synthetic phytochelatins

A novel strategy using synthetic phytochelatins is described for the purpose of developing microbial agents for enhanced bioaccumulation of toxic metals. Synthetic genes encoding for several metal‐chelating phytochelatin analogs (Glu‐Cys)nGly (EC8 (n = 8), EC11 (n = 11), and EC20 (n = 20)) were synt...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biotechnology and bioengineering 2000-12, Vol.70 (5), p.518-524
Hauptverfasser: Bae, Weon, Chen, Wilfred, Mulchandani, Ashok, Mehra, Rajesh K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 524
container_issue 5
container_start_page 518
container_title Biotechnology and bioengineering
container_volume 70
creator Bae, Weon
Chen, Wilfred
Mulchandani, Ashok
Mehra, Rajesh K.
description A novel strategy using synthetic phytochelatins is described for the purpose of developing microbial agents for enhanced bioaccumulation of toxic metals. Synthetic genes encoding for several metal‐chelating phytochelatin analogs (Glu‐Cys)nGly (EC8 (n = 8), EC11 (n = 11), and EC20 (n = 20)) were synthesized, linked to a lpp‐ompA fusion gene, and displayed on the surface of E. coli. For comparison, EC20 was also expressed periplasmically as a fusion with the maltose‐binding protein (MBP‐EC20). Purified MBP‐EC20 was shown to accumulate more Cd2+ per peptide than typical mammalian metallothioneins with a stoichiometry of 10 Cd2+/peptide. Cells displaying synthetic phytochelatins exhibited chain‐length dependent increase in metal accumulation. For example, 18 nmoles of Cd2+/mg dry cells were accumulated by cells displaying EC8, whereas cells exhibiting EC20 accumulated a maximum of 60 nmoles of Cd2+/mg dry cells. Moreover, cells with surface‐expressed EC20 accumulated twice the amount of Cd2+ as cells expressing EC20 periplasmically. The ability to genetically engineer ECs with precisely defined chain length could provide an attractive strategy for developing high‐affinity bioadsorbents suitable for heavy metal removal. © 2000 John Wiley & Sons, Inc. Biotechnol Bioeng 70: 518–524, 2000.
doi_str_mv 10.1002/1097-0290(20001205)70:5<518::AID-BIT6>3.0.CO;2-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_21441692</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>517417</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5866-c6f25d07751a098b7cd9030ce7e656d0566026e4284d6f42519b41c16b23278f3</originalsourceid><addsrcrecordid>eNqVkV1v0zAUhiMEYt3gL6BISIhdpBzbsZ0UhDTC2IoqOrQhdnfkOA4x5KPEKZB_j0NLuUFCXFm2nvP41XmDICEwJwD0GYFURkBTeEoBgFDgpxIW_AUnyWJxtnwdvVreiJdsDvNs_ZxG_E4wO4zcDWZ-RkSMp_QoOHbus7_KRIj7wREhEFMeJ7MAz9tKtdoUYW47pfW22dZqsF0bdmVYGfVtDBszqNqF-RjmSg-mt6oOtan9U2HdplajbT-FbmyHygxWh5tqHDpdmUnTugfBvdJPm4f78yT48Ob8JruMVuuLZXa2ijT3kSItSsoLkJITBWmSS12kwEAbaQQXBXAhgAoT0yQuROmzkzSPiSYip4zKpGQnwZOdd9N3X7fGDdhYN6VUrem2DimJYyJS-k-QSMkY5eDBqx2o-8653pS46W2j-hEJ4NQOTqvGadX4ux2UgBx9O4i-HZzaQYaA2Ropcq98tP97mzem-CPc1-GBx3tAOa3qsvfVWHfgEspkLD31fkd9t7UZ_yvWX1L9untntHNaN5gfB6fqv6CQTHL8-O4CL99er26zq2u8ZT8BcoLCrw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17733250</pqid></control><display><type>article</type><title>Enhanced bioaccumulation of heavy metals by bacterial cells displaying synthetic phytochelatins</title><source>MEDLINE</source><source>Wiley Online Library All Journals</source><creator>Bae, Weon ; Chen, Wilfred ; Mulchandani, Ashok ; Mehra, Rajesh K.</creator><creatorcontrib>Bae, Weon ; Chen, Wilfred ; Mulchandani, Ashok ; Mehra, Rajesh K.</creatorcontrib><description>A novel strategy using synthetic phytochelatins is described for the purpose of developing microbial agents for enhanced bioaccumulation of toxic metals. Synthetic genes encoding for several metal‐chelating phytochelatin analogs (Glu‐Cys)nGly (EC8 (n = 8), EC11 (n = 11), and EC20 (n = 20)) were synthesized, linked to a lpp‐ompA fusion gene, and displayed on the surface of E. coli. For comparison, EC20 was also expressed periplasmically as a fusion with the maltose‐binding protein (MBP‐EC20). Purified MBP‐EC20 was shown to accumulate more Cd2+ per peptide than typical mammalian metallothioneins with a stoichiometry of 10 Cd2+/peptide. Cells displaying synthetic phytochelatins exhibited chain‐length dependent increase in metal accumulation. For example, 18 nmoles of Cd2+/mg dry cells were accumulated by cells displaying EC8, whereas cells exhibiting EC20 accumulated a maximum of 60 nmoles of Cd2+/mg dry cells. Moreover, cells with surface‐expressed EC20 accumulated twice the amount of Cd2+ as cells expressing EC20 periplasmically. The ability to genetically engineer ECs with precisely defined chain length could provide an attractive strategy for developing high‐affinity bioadsorbents suitable for heavy metal removal. © 2000 John Wiley &amp; Sons, Inc. Biotechnol Bioeng 70: 518–524, 2000.</description><identifier>ISSN: 0006-3592</identifier><identifier>EISSN: 1097-0290</identifier><identifier>DOI: 10.1002/1097-0290(20001205)70:5&lt;518::AID-BIT6&gt;3.0.CO;2-5</identifier><identifier>PMID: 11042548</identifier><identifier>CODEN: BIBIAU</identifier><language>eng</language><publisher>New York: John Wiley &amp; Sons, Inc</publisher><subject>Absorption ; Bacteria ; Bacterial Outer Membrane Proteins - genetics ; Bacterial Outer Membrane Proteins - metabolism ; Base Sequence ; bioadsorbents ; Biological and medical sciences ; Biotechnology ; Cadmium - metabolism ; Cell Membrane - genetics ; Cell Membrane - metabolism ; Cells ; Escherichia coli - genetics ; Escherichia coli - metabolism ; Fundamental and applied biological sciences. Psychology ; Genes ; Genetic engineering ; Genetic Engineering - methods ; Genetic technics ; Glutathione ; Heavy metals ; Lipoproteins - genetics ; Lipoproteins - metabolism ; Lpp-OmpA ; Metalloproteins - genetics ; Metalloproteins - metabolism ; Metals, Heavy - metabolism ; Methods. Procedures. Technologies ; Modification of gene expression level ; Molecular Sequence Data ; phytochelatin analogs ; Phytochelatins ; Plant Proteins - genetics ; Plant Proteins - metabolism ; Proteins ; Recombinant Fusion Proteins - genetics ; Recombinant Fusion Proteins - metabolism ; Stoichiometry ; Synthesis (chemical)</subject><ispartof>Biotechnology and bioengineering, 2000-12, Vol.70 (5), p.518-524</ispartof><rights>Copyright © 2000 John Wiley &amp; Sons, Inc.</rights><rights>2001 INIST-CNRS</rights><rights>Copyright 2000 John Wiley &amp; Sons, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c5866-c6f25d07751a098b7cd9030ce7e656d0566026e4284d6f42519b41c16b23278f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2F1097-0290%2820001205%2970%3A5%3C518%3A%3AAID-BIT6%3E3.0.CO%3B2-5$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2F1097-0290%2820001205%2970%3A5%3C518%3A%3AAID-BIT6%3E3.0.CO%3B2-5$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=823747$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11042548$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bae, Weon</creatorcontrib><creatorcontrib>Chen, Wilfred</creatorcontrib><creatorcontrib>Mulchandani, Ashok</creatorcontrib><creatorcontrib>Mehra, Rajesh K.</creatorcontrib><title>Enhanced bioaccumulation of heavy metals by bacterial cells displaying synthetic phytochelatins</title><title>Biotechnology and bioengineering</title><addtitle>Biotechnol. Bioeng</addtitle><description>A novel strategy using synthetic phytochelatins is described for the purpose of developing microbial agents for enhanced bioaccumulation of toxic metals. Synthetic genes encoding for several metal‐chelating phytochelatin analogs (Glu‐Cys)nGly (EC8 (n = 8), EC11 (n = 11), and EC20 (n = 20)) were synthesized, linked to a lpp‐ompA fusion gene, and displayed on the surface of E. coli. For comparison, EC20 was also expressed periplasmically as a fusion with the maltose‐binding protein (MBP‐EC20). Purified MBP‐EC20 was shown to accumulate more Cd2+ per peptide than typical mammalian metallothioneins with a stoichiometry of 10 Cd2+/peptide. Cells displaying synthetic phytochelatins exhibited chain‐length dependent increase in metal accumulation. For example, 18 nmoles of Cd2+/mg dry cells were accumulated by cells displaying EC8, whereas cells exhibiting EC20 accumulated a maximum of 60 nmoles of Cd2+/mg dry cells. Moreover, cells with surface‐expressed EC20 accumulated twice the amount of Cd2+ as cells expressing EC20 periplasmically. The ability to genetically engineer ECs with precisely defined chain length could provide an attractive strategy for developing high‐affinity bioadsorbents suitable for heavy metal removal. © 2000 John Wiley &amp; Sons, Inc. Biotechnol Bioeng 70: 518–524, 2000.</description><subject>Absorption</subject><subject>Bacteria</subject><subject>Bacterial Outer Membrane Proteins - genetics</subject><subject>Bacterial Outer Membrane Proteins - metabolism</subject><subject>Base Sequence</subject><subject>bioadsorbents</subject><subject>Biological and medical sciences</subject><subject>Biotechnology</subject><subject>Cadmium - metabolism</subject><subject>Cell Membrane - genetics</subject><subject>Cell Membrane - metabolism</subject><subject>Cells</subject><subject>Escherichia coli - genetics</subject><subject>Escherichia coli - metabolism</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Genes</subject><subject>Genetic engineering</subject><subject>Genetic Engineering - methods</subject><subject>Genetic technics</subject><subject>Glutathione</subject><subject>Heavy metals</subject><subject>Lipoproteins - genetics</subject><subject>Lipoproteins - metabolism</subject><subject>Lpp-OmpA</subject><subject>Metalloproteins - genetics</subject><subject>Metalloproteins - metabolism</subject><subject>Metals, Heavy - metabolism</subject><subject>Methods. Procedures. Technologies</subject><subject>Modification of gene expression level</subject><subject>Molecular Sequence Data</subject><subject>phytochelatin analogs</subject><subject>Phytochelatins</subject><subject>Plant Proteins - genetics</subject><subject>Plant Proteins - metabolism</subject><subject>Proteins</subject><subject>Recombinant Fusion Proteins - genetics</subject><subject>Recombinant Fusion Proteins - metabolism</subject><subject>Stoichiometry</subject><subject>Synthesis (chemical)</subject><issn>0006-3592</issn><issn>1097-0290</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqVkV1v0zAUhiMEYt3gL6BISIhdpBzbsZ0UhDTC2IoqOrQhdnfkOA4x5KPEKZB_j0NLuUFCXFm2nvP41XmDICEwJwD0GYFURkBTeEoBgFDgpxIW_AUnyWJxtnwdvVreiJdsDvNs_ZxG_E4wO4zcDWZ-RkSMp_QoOHbus7_KRIj7wREhEFMeJ7MAz9tKtdoUYW47pfW22dZqsF0bdmVYGfVtDBszqNqF-RjmSg-mt6oOtan9U2HdplajbT-FbmyHygxWh5tqHDpdmUnTugfBvdJPm4f78yT48Ob8JruMVuuLZXa2ijT3kSItSsoLkJITBWmSS12kwEAbaQQXBXAhgAoT0yQuROmzkzSPiSYip4zKpGQnwZOdd9N3X7fGDdhYN6VUrem2DimJYyJS-k-QSMkY5eDBqx2o-8653pS46W2j-hEJ4NQOTqvGadX4ux2UgBx9O4i-HZzaQYaA2Ropcq98tP97mzem-CPc1-GBx3tAOa3qsvfVWHfgEspkLD31fkd9t7UZ_yvWX1L9untntHNaN5gfB6fqv6CQTHL8-O4CL99er26zq2u8ZT8BcoLCrw</recordid><startdate>20001205</startdate><enddate>20001205</enddate><creator>Bae, Weon</creator><creator>Chen, Wilfred</creator><creator>Mulchandani, Ashok</creator><creator>Mehra, Rajesh K.</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>20001205</creationdate><title>Enhanced bioaccumulation of heavy metals by bacterial cells displaying synthetic phytochelatins</title><author>Bae, Weon ; Chen, Wilfred ; Mulchandani, Ashok ; Mehra, Rajesh K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5866-c6f25d07751a098b7cd9030ce7e656d0566026e4284d6f42519b41c16b23278f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Absorption</topic><topic>Bacteria</topic><topic>Bacterial Outer Membrane Proteins - genetics</topic><topic>Bacterial Outer Membrane Proteins - metabolism</topic><topic>Base Sequence</topic><topic>bioadsorbents</topic><topic>Biological and medical sciences</topic><topic>Biotechnology</topic><topic>Cadmium - metabolism</topic><topic>Cell Membrane - genetics</topic><topic>Cell Membrane - metabolism</topic><topic>Cells</topic><topic>Escherichia coli - genetics</topic><topic>Escherichia coli - metabolism</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Genes</topic><topic>Genetic engineering</topic><topic>Genetic Engineering - methods</topic><topic>Genetic technics</topic><topic>Glutathione</topic><topic>Heavy metals</topic><topic>Lipoproteins - genetics</topic><topic>Lipoproteins - metabolism</topic><topic>Lpp-OmpA</topic><topic>Metalloproteins - genetics</topic><topic>Metalloproteins - metabolism</topic><topic>Metals, Heavy - metabolism</topic><topic>Methods. Procedures. Technologies</topic><topic>Modification of gene expression level</topic><topic>Molecular Sequence Data</topic><topic>phytochelatin analogs</topic><topic>Phytochelatins</topic><topic>Plant Proteins - genetics</topic><topic>Plant Proteins - metabolism</topic><topic>Proteins</topic><topic>Recombinant Fusion Proteins - genetics</topic><topic>Recombinant Fusion Proteins - metabolism</topic><topic>Stoichiometry</topic><topic>Synthesis (chemical)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bae, Weon</creatorcontrib><creatorcontrib>Chen, Wilfred</creatorcontrib><creatorcontrib>Mulchandani, Ashok</creatorcontrib><creatorcontrib>Mehra, Rajesh K.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Biotechnology and bioengineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bae, Weon</au><au>Chen, Wilfred</au><au>Mulchandani, Ashok</au><au>Mehra, Rajesh K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhanced bioaccumulation of heavy metals by bacterial cells displaying synthetic phytochelatins</atitle><jtitle>Biotechnology and bioengineering</jtitle><addtitle>Biotechnol. Bioeng</addtitle><date>2000-12-05</date><risdate>2000</risdate><volume>70</volume><issue>5</issue><spage>518</spage><epage>524</epage><pages>518-524</pages><issn>0006-3592</issn><eissn>1097-0290</eissn><coden>BIBIAU</coden><abstract>A novel strategy using synthetic phytochelatins is described for the purpose of developing microbial agents for enhanced bioaccumulation of toxic metals. Synthetic genes encoding for several metal‐chelating phytochelatin analogs (Glu‐Cys)nGly (EC8 (n = 8), EC11 (n = 11), and EC20 (n = 20)) were synthesized, linked to a lpp‐ompA fusion gene, and displayed on the surface of E. coli. For comparison, EC20 was also expressed periplasmically as a fusion with the maltose‐binding protein (MBP‐EC20). Purified MBP‐EC20 was shown to accumulate more Cd2+ per peptide than typical mammalian metallothioneins with a stoichiometry of 10 Cd2+/peptide. Cells displaying synthetic phytochelatins exhibited chain‐length dependent increase in metal accumulation. For example, 18 nmoles of Cd2+/mg dry cells were accumulated by cells displaying EC8, whereas cells exhibiting EC20 accumulated a maximum of 60 nmoles of Cd2+/mg dry cells. Moreover, cells with surface‐expressed EC20 accumulated twice the amount of Cd2+ as cells expressing EC20 periplasmically. The ability to genetically engineer ECs with precisely defined chain length could provide an attractive strategy for developing high‐affinity bioadsorbents suitable for heavy metal removal. © 2000 John Wiley &amp; Sons, Inc. Biotechnol Bioeng 70: 518–524, 2000.</abstract><cop>New York</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>11042548</pmid><doi>10.1002/1097-0290(20001205)70:5&lt;518::AID-BIT6&gt;3.0.CO;2-5</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0006-3592
ispartof Biotechnology and bioengineering, 2000-12, Vol.70 (5), p.518-524
issn 0006-3592
1097-0290
language eng
recordid cdi_proquest_miscellaneous_21441692
source MEDLINE; Wiley Online Library All Journals
subjects Absorption
Bacteria
Bacterial Outer Membrane Proteins - genetics
Bacterial Outer Membrane Proteins - metabolism
Base Sequence
bioadsorbents
Biological and medical sciences
Biotechnology
Cadmium - metabolism
Cell Membrane - genetics
Cell Membrane - metabolism
Cells
Escherichia coli - genetics
Escherichia coli - metabolism
Fundamental and applied biological sciences. Psychology
Genes
Genetic engineering
Genetic Engineering - methods
Genetic technics
Glutathione
Heavy metals
Lipoproteins - genetics
Lipoproteins - metabolism
Lpp-OmpA
Metalloproteins - genetics
Metalloproteins - metabolism
Metals, Heavy - metabolism
Methods. Procedures. Technologies
Modification of gene expression level
Molecular Sequence Data
phytochelatin analogs
Phytochelatins
Plant Proteins - genetics
Plant Proteins - metabolism
Proteins
Recombinant Fusion Proteins - genetics
Recombinant Fusion Proteins - metabolism
Stoichiometry
Synthesis (chemical)
title Enhanced bioaccumulation of heavy metals by bacterial cells displaying synthetic phytochelatins
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T03%3A41%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhanced%20bioaccumulation%20of%20heavy%20metals%20by%20bacterial%20cells%20displaying%20synthetic%20phytochelatins&rft.jtitle=Biotechnology%20and%20bioengineering&rft.au=Bae,%20Weon&rft.date=2000-12-05&rft.volume=70&rft.issue=5&rft.spage=518&rft.epage=524&rft.pages=518-524&rft.issn=0006-3592&rft.eissn=1097-0290&rft.coden=BIBIAU&rft_id=info:doi/10.1002/1097-0290(20001205)70:5%3C518::AID-BIT6%3E3.0.CO;2-5&rft_dat=%3Cproquest_cross%3E517417%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=17733250&rft_id=info:pmid/11042548&rfr_iscdi=true