Low-dimensional dynamics in observables from complex and higher-dimensional systems

We analyze fluctuating observables of high-dimensional systems as the New York Stock Market S &P 500 index, the amino-acid sequence in the M. genitalium DNA, the maximum temperature of the San Francisco Bay area, and the toroidal magneto plasma potential. The probability measures of these fluctu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physica A 2000-11, Vol.287 (1), p.91-99
Hauptverfasser: Baptista, Murilo S, Caldas, Iberê L, Baptista, Mauricio S, Baptista, Cassio S, Ferreira, André A, Heller, Maria Vittoria A.P
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 99
container_issue 1
container_start_page 91
container_title Physica A
container_volume 287
creator Baptista, Murilo S
Caldas, Iberê L
Baptista, Mauricio S
Baptista, Cassio S
Ferreira, André A
Heller, Maria Vittoria A.P
description We analyze fluctuating observables of high-dimensional systems as the New York Stock Market S &P 500 index, the amino-acid sequence in the M. genitalium DNA, the maximum temperature of the San Francisco Bay area, and the toroidal magneto plasma potential. The probability measures of these fluctuations are obtained by the statistical analysis of a rescaling combination of the first Poincaré return time of a low-dimensional chaotic system. This result indicates that it is possible to use a measure of a low-dimensional chaotic attractor to describe a measure of these complex systems. Moreover, within this description we determine scaling power laws for average measurements of the analyzed fluctuations.
doi_str_mv 10.1016/S0378-4371(00)00448-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_21440202</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0378437100004489</els_id><sourcerecordid>516033</sourcerecordid><originalsourceid>FETCH-LOGICAL-c338t-bca0c9584a9e71fc662a0e5c4f0f0fb10dd197fef3807d2bb931145140a22d6c3</originalsourceid><addsrcrecordid>eNqFkMtKA0EQRRtRMEY_QZiV6GK0-jGvlYj4goCL6Lrp6a4xLTPTsSuJ5u-dJCK4klrczT0X6jB2yuGSA8-vpiCLMlWy4OcAFwBKlWm1x0a8LGQqOK_22ei3csiOiN4BgBdSjNh0Ej5T5zvsyYfetIlb96bzlhLfJ6EmjCtTt0hJE0OX2NDNW_xKTO-SmX-bYfzD0poW2NExO2hMS3jyk2P2en_3cvuYTp4fnm5vJqmVslyktTVgq6xUpsKCNzbPhQHMrGpguJqDc7wqGmxkCYUTdV1JzlXGFRghXG7lmJ3tducxfCyRFrrzZLFtTY9hSVpwpUCAGIrZrmhjIIrY6Hn0nYlrzUFvFOqtQr3xowH0VqGuBu56x-Hwxcpj1GQ99hadj2gX2gX_z8I3Snh5_Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>21440202</pqid></control><display><type>article</type><title>Low-dimensional dynamics in observables from complex and higher-dimensional systems</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Baptista, Murilo S ; Caldas, Iberê L ; Baptista, Mauricio S ; Baptista, Cassio S ; Ferreira, André A ; Heller, Maria Vittoria A.P</creator><creatorcontrib>Baptista, Murilo S ; Caldas, Iberê L ; Baptista, Mauricio S ; Baptista, Cassio S ; Ferreira, André A ; Heller, Maria Vittoria A.P</creatorcontrib><description>We analyze fluctuating observables of high-dimensional systems as the New York Stock Market S &amp;P 500 index, the amino-acid sequence in the M. genitalium DNA, the maximum temperature of the San Francisco Bay area, and the toroidal magneto plasma potential. The probability measures of these fluctuations are obtained by the statistical analysis of a rescaling combination of the first Poincaré return time of a low-dimensional chaotic system. This result indicates that it is possible to use a measure of a low-dimensional chaotic attractor to describe a measure of these complex systems. Moreover, within this description we determine scaling power laws for average measurements of the analyzed fluctuations.</description><identifier>ISSN: 0378-4371</identifier><identifier>EISSN: 1873-2119</identifier><identifier>DOI: 10.1016/S0378-4371(00)00448-9</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Amino acids ; Chaos ; Chaos theory ; DNA ; Econophysics ; Magnetoplasma ; Mathematical models ; Modeling ; Probability distributions ; Stock market ; Turbulence</subject><ispartof>Physica A, 2000-11, Vol.287 (1), p.91-99</ispartof><rights>2000 Elsevier Science B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c338t-bca0c9584a9e71fc662a0e5c4f0f0fb10dd197fef3807d2bb931145140a22d6c3</citedby><cites>FETCH-LOGICAL-c338t-bca0c9584a9e71fc662a0e5c4f0f0fb10dd197fef3807d2bb931145140a22d6c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0378-4371(00)00448-9$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Baptista, Murilo S</creatorcontrib><creatorcontrib>Caldas, Iberê L</creatorcontrib><creatorcontrib>Baptista, Mauricio S</creatorcontrib><creatorcontrib>Baptista, Cassio S</creatorcontrib><creatorcontrib>Ferreira, André A</creatorcontrib><creatorcontrib>Heller, Maria Vittoria A.P</creatorcontrib><title>Low-dimensional dynamics in observables from complex and higher-dimensional systems</title><title>Physica A</title><description>We analyze fluctuating observables of high-dimensional systems as the New York Stock Market S &amp;P 500 index, the amino-acid sequence in the M. genitalium DNA, the maximum temperature of the San Francisco Bay area, and the toroidal magneto plasma potential. The probability measures of these fluctuations are obtained by the statistical analysis of a rescaling combination of the first Poincaré return time of a low-dimensional chaotic system. This result indicates that it is possible to use a measure of a low-dimensional chaotic attractor to describe a measure of these complex systems. Moreover, within this description we determine scaling power laws for average measurements of the analyzed fluctuations.</description><subject>Amino acids</subject><subject>Chaos</subject><subject>Chaos theory</subject><subject>DNA</subject><subject>Econophysics</subject><subject>Magnetoplasma</subject><subject>Mathematical models</subject><subject>Modeling</subject><subject>Probability distributions</subject><subject>Stock market</subject><subject>Turbulence</subject><issn>0378-4371</issn><issn>1873-2119</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><recordid>eNqFkMtKA0EQRRtRMEY_QZiV6GK0-jGvlYj4goCL6Lrp6a4xLTPTsSuJ5u-dJCK4klrczT0X6jB2yuGSA8-vpiCLMlWy4OcAFwBKlWm1x0a8LGQqOK_22ei3csiOiN4BgBdSjNh0Ej5T5zvsyYfetIlb96bzlhLfJ6EmjCtTt0hJE0OX2NDNW_xKTO-SmX-bYfzD0poW2NExO2hMS3jyk2P2en_3cvuYTp4fnm5vJqmVslyktTVgq6xUpsKCNzbPhQHMrGpguJqDc7wqGmxkCYUTdV1JzlXGFRghXG7lmJ3tducxfCyRFrrzZLFtTY9hSVpwpUCAGIrZrmhjIIrY6Hn0nYlrzUFvFOqtQr3xowH0VqGuBu56x-Hwxcpj1GQ99hadj2gX2gX_z8I3Snh5_Q</recordid><startdate>20001115</startdate><enddate>20001115</enddate><creator>Baptista, Murilo S</creator><creator>Caldas, Iberê L</creator><creator>Baptista, Mauricio S</creator><creator>Baptista, Cassio S</creator><creator>Ferreira, André A</creator><creator>Heller, Maria Vittoria A.P</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20001115</creationdate><title>Low-dimensional dynamics in observables from complex and higher-dimensional systems</title><author>Baptista, Murilo S ; Caldas, Iberê L ; Baptista, Mauricio S ; Baptista, Cassio S ; Ferreira, André A ; Heller, Maria Vittoria A.P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c338t-bca0c9584a9e71fc662a0e5c4f0f0fb10dd197fef3807d2bb931145140a22d6c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Amino acids</topic><topic>Chaos</topic><topic>Chaos theory</topic><topic>DNA</topic><topic>Econophysics</topic><topic>Magnetoplasma</topic><topic>Mathematical models</topic><topic>Modeling</topic><topic>Probability distributions</topic><topic>Stock market</topic><topic>Turbulence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Baptista, Murilo S</creatorcontrib><creatorcontrib>Caldas, Iberê L</creatorcontrib><creatorcontrib>Baptista, Mauricio S</creatorcontrib><creatorcontrib>Baptista, Cassio S</creatorcontrib><creatorcontrib>Ferreira, André A</creatorcontrib><creatorcontrib>Heller, Maria Vittoria A.P</creatorcontrib><collection>CrossRef</collection><jtitle>Physica A</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Baptista, Murilo S</au><au>Caldas, Iberê L</au><au>Baptista, Mauricio S</au><au>Baptista, Cassio S</au><au>Ferreira, André A</au><au>Heller, Maria Vittoria A.P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Low-dimensional dynamics in observables from complex and higher-dimensional systems</atitle><jtitle>Physica A</jtitle><date>2000-11-15</date><risdate>2000</risdate><volume>287</volume><issue>1</issue><spage>91</spage><epage>99</epage><pages>91-99</pages><issn>0378-4371</issn><eissn>1873-2119</eissn><abstract>We analyze fluctuating observables of high-dimensional systems as the New York Stock Market S &amp;P 500 index, the amino-acid sequence in the M. genitalium DNA, the maximum temperature of the San Francisco Bay area, and the toroidal magneto plasma potential. The probability measures of these fluctuations are obtained by the statistical analysis of a rescaling combination of the first Poincaré return time of a low-dimensional chaotic system. This result indicates that it is possible to use a measure of a low-dimensional chaotic attractor to describe a measure of these complex systems. Moreover, within this description we determine scaling power laws for average measurements of the analyzed fluctuations.</abstract><pub>Elsevier B.V</pub><doi>10.1016/S0378-4371(00)00448-9</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0378-4371
ispartof Physica A, 2000-11, Vol.287 (1), p.91-99
issn 0378-4371
1873-2119
language eng
recordid cdi_proquest_miscellaneous_21440202
source Elsevier ScienceDirect Journals Complete
subjects Amino acids
Chaos
Chaos theory
DNA
Econophysics
Magnetoplasma
Mathematical models
Modeling
Probability distributions
Stock market
Turbulence
title Low-dimensional dynamics in observables from complex and higher-dimensional systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T07%3A52%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Low-dimensional%20dynamics%20in%20observables%20from%20complex%20and%20higher-dimensional%20systems&rft.jtitle=Physica%20A&rft.au=Baptista,%20Murilo%20S&rft.date=2000-11-15&rft.volume=287&rft.issue=1&rft.spage=91&rft.epage=99&rft.pages=91-99&rft.issn=0378-4371&rft.eissn=1873-2119&rft_id=info:doi/10.1016/S0378-4371(00)00448-9&rft_dat=%3Cproquest_cross%3E516033%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=21440202&rft_id=info:pmid/&rft_els_id=S0378437100004489&rfr_iscdi=true