Artificial neural network-based performance assessments

We have explored the ability of artificial neural network technologies to generate performance models of complex problem-solving tasks without the detailed a priori knowledge of the nature of the task. To test the generalizibility of this approach we applied this analysis to two diverse content doma...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers in human behavior 1999-05, Vol.15 (3), p.295-313
Hauptverfasser: Stevens, R, Ikeda, J, Casillas, A, Palacio-Cayetano, J, Clyman, S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 313
container_issue 3
container_start_page 295
container_title Computers in human behavior
container_volume 15
creator Stevens, R
Ikeda, J
Casillas, A
Palacio-Cayetano, J
Clyman, S
description We have explored the ability of artificial neural network technologies to generate performance models of complex problem-solving tasks without the detailed a priori knowledge of the nature of the task. To test the generalizibility of this approach we applied this analysis to two diverse content domains—high school genetics and clinical patient management. In both domains, the artificial neural networks, using only the sequence of actions taken while performing the task, generated multiple classification groups defining different levels of competence. The validity of these neural network performance groupings was further established by the good concordance of these classifications with independently derived expert ratings.
doi_str_mv 10.1016/S0747-5632(99)00025-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_21427304</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0747563299000254</els_id><sourcerecordid>405669</sourcerecordid><originalsourceid>FETCH-LOGICAL-c367t-a72ed0889e589078186c9353f7a9e55b7279d66197edb4f8762b05a5149e96153</originalsourceid><addsrcrecordid>eNqFkMlKxEAQhhtRcBx9BGEOInqI9pLeTjIMbjDgQT03nU4FWrOMXYni25tZ0KOnguKr-vk_Qk4ZvWKUqetnqnOdSSX4hbWXlFIus3yPTJjRItPK8n0y-UUOyRHi2whJSdWE6HnqYxVD9PWshSFtRv_Vpfes8AjlbAWp6lLj2wAzjwiIDbQ9HpODytcIJ7s5Ja93ty-Lh2z5dP-4mC-zIJTuM685lNQYC9JYqg0zKlghRaX9uJKF5tqWSjGroSzyymjFCyq9ZLkFq5gUU3K-_btK3ccA2LsmYoC69i10AzrOcq4FzUdQbsGQOsQElVul2Pj07Rh1a01uo8mtHThr3UaTW9-d7QI8Bl9XaWwa8e_YSKOEHrGbLQZj2c8IyWGIMEopY4LQu7KL_wT9AASvetA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>21427304</pqid></control><display><type>article</type><title>Artificial neural network-based performance assessments</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Stevens, R ; Ikeda, J ; Casillas, A ; Palacio-Cayetano, J ; Clyman, S</creator><creatorcontrib>Stevens, R ; Ikeda, J ; Casillas, A ; Palacio-Cayetano, J ; Clyman, S</creatorcontrib><description>We have explored the ability of artificial neural network technologies to generate performance models of complex problem-solving tasks without the detailed a priori knowledge of the nature of the task. To test the generalizibility of this approach we applied this analysis to two diverse content domains—high school genetics and clinical patient management. In both domains, the artificial neural networks, using only the sequence of actions taken while performing the task, generated multiple classification groups defining different levels of competence. The validity of these neural network performance groupings was further established by the good concordance of these classifications with independently derived expert ratings.</description><identifier>ISSN: 0747-5632</identifier><identifier>EISSN: 1873-7692</identifier><identifier>DOI: 10.1016/S0747-5632(99)00025-4</identifier><identifier>CODEN: CHBEEQ</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Biological and medical sciences ; Biomedical engineering ; Computer applications ; Education ; Fundamental and applied biological sciences. Psychology ; Problem solving ; Psychology. Psychoanalysis. Psychiatry ; Psychology. Psychophysiology ; Psychometrics. Statistics. Methodology ; Statistics. Mathematics</subject><ispartof>Computers in human behavior, 1999-05, Vol.15 (3), p.295-313</ispartof><rights>1999 Elsevier Science Ltd</rights><rights>1999 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c367t-a72ed0889e589078186c9353f7a9e55b7279d66197edb4f8762b05a5149e96153</citedby><cites>FETCH-LOGICAL-c367t-a72ed0889e589078186c9353f7a9e55b7279d66197edb4f8762b05a5149e96153</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0747-5632(99)00025-4$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27923,27924,45994</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1858637$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Stevens, R</creatorcontrib><creatorcontrib>Ikeda, J</creatorcontrib><creatorcontrib>Casillas, A</creatorcontrib><creatorcontrib>Palacio-Cayetano, J</creatorcontrib><creatorcontrib>Clyman, S</creatorcontrib><title>Artificial neural network-based performance assessments</title><title>Computers in human behavior</title><description>We have explored the ability of artificial neural network technologies to generate performance models of complex problem-solving tasks without the detailed a priori knowledge of the nature of the task. To test the generalizibility of this approach we applied this analysis to two diverse content domains—high school genetics and clinical patient management. In both domains, the artificial neural networks, using only the sequence of actions taken while performing the task, generated multiple classification groups defining different levels of competence. The validity of these neural network performance groupings was further established by the good concordance of these classifications with independently derived expert ratings.</description><subject>Biological and medical sciences</subject><subject>Biomedical engineering</subject><subject>Computer applications</subject><subject>Education</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Problem solving</subject><subject>Psychology. Psychoanalysis. Psychiatry</subject><subject>Psychology. Psychophysiology</subject><subject>Psychometrics. Statistics. Methodology</subject><subject>Statistics. Mathematics</subject><issn>0747-5632</issn><issn>1873-7692</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><recordid>eNqFkMlKxEAQhhtRcBx9BGEOInqI9pLeTjIMbjDgQT03nU4FWrOMXYni25tZ0KOnguKr-vk_Qk4ZvWKUqetnqnOdSSX4hbWXlFIus3yPTJjRItPK8n0y-UUOyRHi2whJSdWE6HnqYxVD9PWshSFtRv_Vpfes8AjlbAWp6lLj2wAzjwiIDbQ9HpODytcIJ7s5Ja93ty-Lh2z5dP-4mC-zIJTuM685lNQYC9JYqg0zKlghRaX9uJKF5tqWSjGroSzyymjFCyq9ZLkFq5gUU3K-_btK3ccA2LsmYoC69i10AzrOcq4FzUdQbsGQOsQElVul2Pj07Rh1a01uo8mtHThr3UaTW9-d7QI8Bl9XaWwa8e_YSKOEHrGbLQZj2c8IyWGIMEopY4LQu7KL_wT9AASvetA</recordid><startdate>19990501</startdate><enddate>19990501</enddate><creator>Stevens, R</creator><creator>Ikeda, J</creator><creator>Casillas, A</creator><creator>Palacio-Cayetano, J</creator><creator>Clyman, S</creator><general>Elsevier Ltd</general><general>Elsevier Science</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19990501</creationdate><title>Artificial neural network-based performance assessments</title><author>Stevens, R ; Ikeda, J ; Casillas, A ; Palacio-Cayetano, J ; Clyman, S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c367t-a72ed0889e589078186c9353f7a9e55b7279d66197edb4f8762b05a5149e96153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Biological and medical sciences</topic><topic>Biomedical engineering</topic><topic>Computer applications</topic><topic>Education</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Problem solving</topic><topic>Psychology. Psychoanalysis. Psychiatry</topic><topic>Psychology. Psychophysiology</topic><topic>Psychometrics. Statistics. Methodology</topic><topic>Statistics. Mathematics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stevens, R</creatorcontrib><creatorcontrib>Ikeda, J</creatorcontrib><creatorcontrib>Casillas, A</creatorcontrib><creatorcontrib>Palacio-Cayetano, J</creatorcontrib><creatorcontrib>Clyman, S</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Computers in human behavior</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stevens, R</au><au>Ikeda, J</au><au>Casillas, A</au><au>Palacio-Cayetano, J</au><au>Clyman, S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Artificial neural network-based performance assessments</atitle><jtitle>Computers in human behavior</jtitle><date>1999-05-01</date><risdate>1999</risdate><volume>15</volume><issue>3</issue><spage>295</spage><epage>313</epage><pages>295-313</pages><issn>0747-5632</issn><eissn>1873-7692</eissn><coden>CHBEEQ</coden><abstract>We have explored the ability of artificial neural network technologies to generate performance models of complex problem-solving tasks without the detailed a priori knowledge of the nature of the task. To test the generalizibility of this approach we applied this analysis to two diverse content domains—high school genetics and clinical patient management. In both domains, the artificial neural networks, using only the sequence of actions taken while performing the task, generated multiple classification groups defining different levels of competence. The validity of these neural network performance groupings was further established by the good concordance of these classifications with independently derived expert ratings.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/S0747-5632(99)00025-4</doi><tpages>19</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0747-5632
ispartof Computers in human behavior, 1999-05, Vol.15 (3), p.295-313
issn 0747-5632
1873-7692
language eng
recordid cdi_proquest_miscellaneous_21427304
source Elsevier ScienceDirect Journals Complete
subjects Biological and medical sciences
Biomedical engineering
Computer applications
Education
Fundamental and applied biological sciences. Psychology
Problem solving
Psychology. Psychoanalysis. Psychiatry
Psychology. Psychophysiology
Psychometrics. Statistics. Methodology
Statistics. Mathematics
title Artificial neural network-based performance assessments
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T17%3A45%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Artificial%20neural%20network-based%20performance%20assessments&rft.jtitle=Computers%20in%20human%20behavior&rft.au=Stevens,%20R&rft.date=1999-05-01&rft.volume=15&rft.issue=3&rft.spage=295&rft.epage=313&rft.pages=295-313&rft.issn=0747-5632&rft.eissn=1873-7692&rft.coden=CHBEEQ&rft_id=info:doi/10.1016/S0747-5632(99)00025-4&rft_dat=%3Cproquest_cross%3E405669%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=21427304&rft_id=info:pmid/&rft_els_id=S0747563299000254&rfr_iscdi=true