Artificial neural network-based performance assessments
We have explored the ability of artificial neural network technologies to generate performance models of complex problem-solving tasks without the detailed a priori knowledge of the nature of the task. To test the generalizibility of this approach we applied this analysis to two diverse content doma...
Gespeichert in:
Veröffentlicht in: | Computers in human behavior 1999-05, Vol.15 (3), p.295-313 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 313 |
---|---|
container_issue | 3 |
container_start_page | 295 |
container_title | Computers in human behavior |
container_volume | 15 |
creator | Stevens, R Ikeda, J Casillas, A Palacio-Cayetano, J Clyman, S |
description | We have explored the ability of artificial neural network technologies to generate performance models of complex problem-solving tasks without the detailed a priori knowledge of the nature of the task. To test the generalizibility of this approach we applied this analysis to two diverse content domains—high school genetics and clinical patient management. In both domains, the artificial neural networks, using only the sequence of actions taken while performing the task, generated multiple classification groups defining different levels of competence. The validity of these neural network performance groupings was further established by the good concordance of these classifications with independently derived expert ratings. |
doi_str_mv | 10.1016/S0747-5632(99)00025-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_21427304</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0747563299000254</els_id><sourcerecordid>405669</sourcerecordid><originalsourceid>FETCH-LOGICAL-c367t-a72ed0889e589078186c9353f7a9e55b7279d66197edb4f8762b05a5149e96153</originalsourceid><addsrcrecordid>eNqFkMlKxEAQhhtRcBx9BGEOInqI9pLeTjIMbjDgQT03nU4FWrOMXYni25tZ0KOnguKr-vk_Qk4ZvWKUqetnqnOdSSX4hbWXlFIus3yPTJjRItPK8n0y-UUOyRHi2whJSdWE6HnqYxVD9PWshSFtRv_Vpfes8AjlbAWp6lLj2wAzjwiIDbQ9HpODytcIJ7s5Ja93ty-Lh2z5dP-4mC-zIJTuM685lNQYC9JYqg0zKlghRaX9uJKF5tqWSjGroSzyymjFCyq9ZLkFq5gUU3K-_btK3ccA2LsmYoC69i10AzrOcq4FzUdQbsGQOsQElVul2Pj07Rh1a01uo8mtHThr3UaTW9-d7QI8Bl9XaWwa8e_YSKOEHrGbLQZj2c8IyWGIMEopY4LQu7KL_wT9AASvetA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>21427304</pqid></control><display><type>article</type><title>Artificial neural network-based performance assessments</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Stevens, R ; Ikeda, J ; Casillas, A ; Palacio-Cayetano, J ; Clyman, S</creator><creatorcontrib>Stevens, R ; Ikeda, J ; Casillas, A ; Palacio-Cayetano, J ; Clyman, S</creatorcontrib><description>We have explored the ability of artificial neural network technologies to generate performance models of complex problem-solving tasks without the detailed a priori knowledge of the nature of the task. To test the generalizibility of this approach we applied this analysis to two diverse content domains—high school genetics and clinical patient management. In both domains, the artificial neural networks, using only the sequence of actions taken while performing the task, generated multiple classification groups defining different levels of competence. The validity of these neural network performance groupings was further established by the good concordance of these classifications with independently derived expert ratings.</description><identifier>ISSN: 0747-5632</identifier><identifier>EISSN: 1873-7692</identifier><identifier>DOI: 10.1016/S0747-5632(99)00025-4</identifier><identifier>CODEN: CHBEEQ</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Biological and medical sciences ; Biomedical engineering ; Computer applications ; Education ; Fundamental and applied biological sciences. Psychology ; Problem solving ; Psychology. Psychoanalysis. Psychiatry ; Psychology. Psychophysiology ; Psychometrics. Statistics. Methodology ; Statistics. Mathematics</subject><ispartof>Computers in human behavior, 1999-05, Vol.15 (3), p.295-313</ispartof><rights>1999 Elsevier Science Ltd</rights><rights>1999 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c367t-a72ed0889e589078186c9353f7a9e55b7279d66197edb4f8762b05a5149e96153</citedby><cites>FETCH-LOGICAL-c367t-a72ed0889e589078186c9353f7a9e55b7279d66197edb4f8762b05a5149e96153</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0747-5632(99)00025-4$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27923,27924,45994</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1858637$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Stevens, R</creatorcontrib><creatorcontrib>Ikeda, J</creatorcontrib><creatorcontrib>Casillas, A</creatorcontrib><creatorcontrib>Palacio-Cayetano, J</creatorcontrib><creatorcontrib>Clyman, S</creatorcontrib><title>Artificial neural network-based performance assessments</title><title>Computers in human behavior</title><description>We have explored the ability of artificial neural network technologies to generate performance models of complex problem-solving tasks without the detailed a priori knowledge of the nature of the task. To test the generalizibility of this approach we applied this analysis to two diverse content domains—high school genetics and clinical patient management. In both domains, the artificial neural networks, using only the sequence of actions taken while performing the task, generated multiple classification groups defining different levels of competence. The validity of these neural network performance groupings was further established by the good concordance of these classifications with independently derived expert ratings.</description><subject>Biological and medical sciences</subject><subject>Biomedical engineering</subject><subject>Computer applications</subject><subject>Education</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Problem solving</subject><subject>Psychology. Psychoanalysis. Psychiatry</subject><subject>Psychology. Psychophysiology</subject><subject>Psychometrics. Statistics. Methodology</subject><subject>Statistics. Mathematics</subject><issn>0747-5632</issn><issn>1873-7692</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><recordid>eNqFkMlKxEAQhhtRcBx9BGEOInqI9pLeTjIMbjDgQT03nU4FWrOMXYni25tZ0KOnguKr-vk_Qk4ZvWKUqetnqnOdSSX4hbWXlFIus3yPTJjRItPK8n0y-UUOyRHi2whJSdWE6HnqYxVD9PWshSFtRv_Vpfes8AjlbAWp6lLj2wAzjwiIDbQ9HpODytcIJ7s5Ja93ty-Lh2z5dP-4mC-zIJTuM685lNQYC9JYqg0zKlghRaX9uJKF5tqWSjGroSzyymjFCyq9ZLkFq5gUU3K-_btK3ccA2LsmYoC69i10AzrOcq4FzUdQbsGQOsQElVul2Pj07Rh1a01uo8mtHThr3UaTW9-d7QI8Bl9XaWwa8e_YSKOEHrGbLQZj2c8IyWGIMEopY4LQu7KL_wT9AASvetA</recordid><startdate>19990501</startdate><enddate>19990501</enddate><creator>Stevens, R</creator><creator>Ikeda, J</creator><creator>Casillas, A</creator><creator>Palacio-Cayetano, J</creator><creator>Clyman, S</creator><general>Elsevier Ltd</general><general>Elsevier Science</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19990501</creationdate><title>Artificial neural network-based performance assessments</title><author>Stevens, R ; Ikeda, J ; Casillas, A ; Palacio-Cayetano, J ; Clyman, S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c367t-a72ed0889e589078186c9353f7a9e55b7279d66197edb4f8762b05a5149e96153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Biological and medical sciences</topic><topic>Biomedical engineering</topic><topic>Computer applications</topic><topic>Education</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Problem solving</topic><topic>Psychology. Psychoanalysis. Psychiatry</topic><topic>Psychology. Psychophysiology</topic><topic>Psychometrics. Statistics. Methodology</topic><topic>Statistics. Mathematics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stevens, R</creatorcontrib><creatorcontrib>Ikeda, J</creatorcontrib><creatorcontrib>Casillas, A</creatorcontrib><creatorcontrib>Palacio-Cayetano, J</creatorcontrib><creatorcontrib>Clyman, S</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Computers in human behavior</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stevens, R</au><au>Ikeda, J</au><au>Casillas, A</au><au>Palacio-Cayetano, J</au><au>Clyman, S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Artificial neural network-based performance assessments</atitle><jtitle>Computers in human behavior</jtitle><date>1999-05-01</date><risdate>1999</risdate><volume>15</volume><issue>3</issue><spage>295</spage><epage>313</epage><pages>295-313</pages><issn>0747-5632</issn><eissn>1873-7692</eissn><coden>CHBEEQ</coden><abstract>We have explored the ability of artificial neural network technologies to generate performance models of complex problem-solving tasks without the detailed a priori knowledge of the nature of the task. To test the generalizibility of this approach we applied this analysis to two diverse content domains—high school genetics and clinical patient management. In both domains, the artificial neural networks, using only the sequence of actions taken while performing the task, generated multiple classification groups defining different levels of competence. The validity of these neural network performance groupings was further established by the good concordance of these classifications with independently derived expert ratings.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/S0747-5632(99)00025-4</doi><tpages>19</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0747-5632 |
ispartof | Computers in human behavior, 1999-05, Vol.15 (3), p.295-313 |
issn | 0747-5632 1873-7692 |
language | eng |
recordid | cdi_proquest_miscellaneous_21427304 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Biological and medical sciences Biomedical engineering Computer applications Education Fundamental and applied biological sciences. Psychology Problem solving Psychology. Psychoanalysis. Psychiatry Psychology. Psychophysiology Psychometrics. Statistics. Methodology Statistics. Mathematics |
title | Artificial neural network-based performance assessments |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T17%3A45%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Artificial%20neural%20network-based%20performance%20assessments&rft.jtitle=Computers%20in%20human%20behavior&rft.au=Stevens,%20R&rft.date=1999-05-01&rft.volume=15&rft.issue=3&rft.spage=295&rft.epage=313&rft.pages=295-313&rft.issn=0747-5632&rft.eissn=1873-7692&rft.coden=CHBEEQ&rft_id=info:doi/10.1016/S0747-5632(99)00025-4&rft_dat=%3Cproquest_cross%3E405669%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=21427304&rft_id=info:pmid/&rft_els_id=S0747563299000254&rfr_iscdi=true |