Stability properties of cerebellar neural networks : The Purkinje cell - climbing fiber dynamic module

In the last few decades it has been proven, that the cerebellum takes part in learning the bulk of motor control. The mechanisms which provide such properties are still largely unknown, but an involvement of parallel fibers and climbing fibers in this process, as have been proposed decades ago in ce...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neural processing letters 1999-04, Vol.9 (2), p.97-106
Hauptverfasser: DUNIN-BARKOWSKI, W. L, SHISHKIN, S. L, WUNSCH, D. C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 106
container_issue 2
container_start_page 97
container_title Neural processing letters
container_volume 9
creator DUNIN-BARKOWSKI, W. L
SHISHKIN, S. L
WUNSCH, D. C
description In the last few decades it has been proven, that the cerebellum takes part in learning the bulk of motor control. The mechanisms which provide such properties are still largely unknown, but an involvement of parallel fibers and climbing fibers in this process, as have been proposed decades ago in cerebellar learning theories, is now clear. Among difficulties of the learning theories is an evident necessity for spontaneous activity of the cerebellar climbing fibers [5]. Recently, the group of M. Mauk proposed an elegant explanation of this inconsistency [11, 12]. We present here a stochastic model of a cerebellar module, based on this new approach. Theoretical treatment yields some consequences for experimental verification. Besides an explanation of real cerebellar functions, the analyzed control system presents a new paradigm for neural network memorizing systems.
doi_str_mv 10.1023/A:1018634805731
format Article
fullrecord <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_proquest_miscellaneous_21397095</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>401372</sourcerecordid><originalsourceid>FETCH-LOGICAL-c287t-d7173c38a16f1c7f32eb01632e145f0e88dce858b728e2597c6524102dd58b7e3</originalsourceid><addsrcrecordid>eNpdkM9LwzAUx4MoOKdnrwHFWzUvaZt0tzH8BQMFJ3grafqq2dJ2Ji2y_94Md_L0eTw-PL7vS8glsFtgXNzNZ8BA5SJVLJMCjsgEIhMpxcdxnIVkSZpzOCVnIawZA8Y4m5DmbdCVdXbY0a3vt-gHi4H2DTXosULntKcdjl67iOGn95tAZ3T1hfR19BvbrTGaztGEGmfbynaftLEVelrvOt1aQ9u-Hh2ek5NGu4AXB07J-8P9avGULF8enxfzZWK4kkNSS5DCCKUhb8DIRnCsGOQRkGYNQ6VqgypTleQKeVZIk2c8je_X9X6JYkpu_u7GZ75HDEPZ2rAPqDvsx1ByEIVkRRbFq3_iuh99F7OVvAAlRGwRonV9sHQw2jVed8aGcuttq_2uBBU7TJn4BY12cic</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918338051</pqid></control><display><type>article</type><title>Stability properties of cerebellar neural networks : The Purkinje cell - climbing fiber dynamic module</title><source>ProQuest Central UK/Ireland</source><source>SpringerLink Journals - AutoHoldings</source><source>ProQuest Central</source><creator>DUNIN-BARKOWSKI, W. L ; SHISHKIN, S. L ; WUNSCH, D. C</creator><creatorcontrib>DUNIN-BARKOWSKI, W. L ; SHISHKIN, S. L ; WUNSCH, D. C</creatorcontrib><description>In the last few decades it has been proven, that the cerebellum takes part in learning the bulk of motor control. The mechanisms which provide such properties are still largely unknown, but an involvement of parallel fibers and climbing fibers in this process, as have been proposed decades ago in cerebellar learning theories, is now clear. Among difficulties of the learning theories is an evident necessity for spontaneous activity of the cerebellar climbing fibers [5]. Recently, the group of M. Mauk proposed an elegant explanation of this inconsistency [11, 12]. We present here a stochastic model of a cerebellar module, based on this new approach. Theoretical treatment yields some consequences for experimental verification. Besides an explanation of real cerebellar functions, the analyzed control system presents a new paradigm for neural network memorizing systems.</description><identifier>ISSN: 1370-4621</identifier><identifier>EISSN: 1573-773X</identifier><identifier>DOI: 10.1023/A:1018634805731</identifier><language>eng</language><publisher>Dordrecht: Springer</publisher><subject>Biological and medical sciences ; Cerebellum ; Computer control systems ; Control system analysis ; Dynamic stability ; Fibers ; Fundamental and applied biological sciences. Psychology ; General aspects. Models. Methods ; Intelligent control ; Learning ; Mathematical models ; Modules ; Neural networks ; Random processes ; Stochastic models ; System stability ; Vertebrates: nervous system and sense organs</subject><ispartof>Neural processing letters, 1999-04, Vol.9 (2), p.97-106</ispartof><rights>1999 INIST-CNRS</rights><rights>Kluwer Academic Publishers 1999.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c287t-d7173c38a16f1c7f32eb01632e145f0e88dce858b728e2597c6524102dd58b7e3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2918338051?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,21387,27923,27924,33743,33744,43804,64384,64386,64388,72240</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1802040$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>DUNIN-BARKOWSKI, W. L</creatorcontrib><creatorcontrib>SHISHKIN, S. L</creatorcontrib><creatorcontrib>WUNSCH, D. C</creatorcontrib><title>Stability properties of cerebellar neural networks : The Purkinje cell - climbing fiber dynamic module</title><title>Neural processing letters</title><description>In the last few decades it has been proven, that the cerebellum takes part in learning the bulk of motor control. The mechanisms which provide such properties are still largely unknown, but an involvement of parallel fibers and climbing fibers in this process, as have been proposed decades ago in cerebellar learning theories, is now clear. Among difficulties of the learning theories is an evident necessity for spontaneous activity of the cerebellar climbing fibers [5]. Recently, the group of M. Mauk proposed an elegant explanation of this inconsistency [11, 12]. We present here a stochastic model of a cerebellar module, based on this new approach. Theoretical treatment yields some consequences for experimental verification. Besides an explanation of real cerebellar functions, the analyzed control system presents a new paradigm for neural network memorizing systems.</description><subject>Biological and medical sciences</subject><subject>Cerebellum</subject><subject>Computer control systems</subject><subject>Control system analysis</subject><subject>Dynamic stability</subject><subject>Fibers</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>General aspects. Models. Methods</subject><subject>Intelligent control</subject><subject>Learning</subject><subject>Mathematical models</subject><subject>Modules</subject><subject>Neural networks</subject><subject>Random processes</subject><subject>Stochastic models</subject><subject>System stability</subject><subject>Vertebrates: nervous system and sense organs</subject><issn>1370-4621</issn><issn>1573-773X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpdkM9LwzAUx4MoOKdnrwHFWzUvaZt0tzH8BQMFJ3grafqq2dJ2Ji2y_94Md_L0eTw-PL7vS8glsFtgXNzNZ8BA5SJVLJMCjsgEIhMpxcdxnIVkSZpzOCVnIawZA8Y4m5DmbdCVdXbY0a3vt-gHi4H2DTXosULntKcdjl67iOGn95tAZ3T1hfR19BvbrTGaztGEGmfbynaftLEVelrvOt1aQ9u-Hh2ek5NGu4AXB07J-8P9avGULF8enxfzZWK4kkNSS5DCCKUhb8DIRnCsGOQRkGYNQ6VqgypTleQKeVZIk2c8je_X9X6JYkpu_u7GZ75HDEPZ2rAPqDvsx1ByEIVkRRbFq3_iuh99F7OVvAAlRGwRonV9sHQw2jVed8aGcuttq_2uBBU7TJn4BY12cic</recordid><startdate>19990401</startdate><enddate>19990401</enddate><creator>DUNIN-BARKOWSKI, W. L</creator><creator>SHISHKIN, S. L</creator><creator>WUNSCH, D. C</creator><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope></search><sort><creationdate>19990401</creationdate><title>Stability properties of cerebellar neural networks : The Purkinje cell - climbing fiber dynamic module</title><author>DUNIN-BARKOWSKI, W. L ; SHISHKIN, S. L ; WUNSCH, D. C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c287t-d7173c38a16f1c7f32eb01632e145f0e88dce858b728e2597c6524102dd58b7e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Biological and medical sciences</topic><topic>Cerebellum</topic><topic>Computer control systems</topic><topic>Control system analysis</topic><topic>Dynamic stability</topic><topic>Fibers</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>General aspects. Models. Methods</topic><topic>Intelligent control</topic><topic>Learning</topic><topic>Mathematical models</topic><topic>Modules</topic><topic>Neural networks</topic><topic>Random processes</topic><topic>Stochastic models</topic><topic>System stability</topic><topic>Vertebrates: nervous system and sense organs</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>DUNIN-BARKOWSKI, W. L</creatorcontrib><creatorcontrib>SHISHKIN, S. L</creatorcontrib><creatorcontrib>WUNSCH, D. C</creatorcontrib><collection>Pascal-Francis</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><jtitle>Neural processing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>DUNIN-BARKOWSKI, W. L</au><au>SHISHKIN, S. L</au><au>WUNSCH, D. C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stability properties of cerebellar neural networks : The Purkinje cell - climbing fiber dynamic module</atitle><jtitle>Neural processing letters</jtitle><date>1999-04-01</date><risdate>1999</risdate><volume>9</volume><issue>2</issue><spage>97</spage><epage>106</epage><pages>97-106</pages><issn>1370-4621</issn><eissn>1573-773X</eissn><abstract>In the last few decades it has been proven, that the cerebellum takes part in learning the bulk of motor control. The mechanisms which provide such properties are still largely unknown, but an involvement of parallel fibers and climbing fibers in this process, as have been proposed decades ago in cerebellar learning theories, is now clear. Among difficulties of the learning theories is an evident necessity for spontaneous activity of the cerebellar climbing fibers [5]. Recently, the group of M. Mauk proposed an elegant explanation of this inconsistency [11, 12]. We present here a stochastic model of a cerebellar module, based on this new approach. Theoretical treatment yields some consequences for experimental verification. Besides an explanation of real cerebellar functions, the analyzed control system presents a new paradigm for neural network memorizing systems.</abstract><cop>Dordrecht</cop><pub>Springer</pub><doi>10.1023/A:1018634805731</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1370-4621
ispartof Neural processing letters, 1999-04, Vol.9 (2), p.97-106
issn 1370-4621
1573-773X
language eng
recordid cdi_proquest_miscellaneous_21397095
source ProQuest Central UK/Ireland; SpringerLink Journals - AutoHoldings; ProQuest Central
subjects Biological and medical sciences
Cerebellum
Computer control systems
Control system analysis
Dynamic stability
Fibers
Fundamental and applied biological sciences. Psychology
General aspects. Models. Methods
Intelligent control
Learning
Mathematical models
Modules
Neural networks
Random processes
Stochastic models
System stability
Vertebrates: nervous system and sense organs
title Stability properties of cerebellar neural networks : The Purkinje cell - climbing fiber dynamic module
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T11%3A32%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stability%20properties%20of%20cerebellar%20neural%20networks%20:%20The%20Purkinje%20cell%20-%20climbing%20fiber%20dynamic%20module&rft.jtitle=Neural%20processing%20letters&rft.au=DUNIN-BARKOWSKI,%20W.%20L&rft.date=1999-04-01&rft.volume=9&rft.issue=2&rft.spage=97&rft.epage=106&rft.pages=97-106&rft.issn=1370-4621&rft.eissn=1573-773X&rft_id=info:doi/10.1023/A:1018634805731&rft_dat=%3Cproquest_pasca%3E401372%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918338051&rft_id=info:pmid/&rfr_iscdi=true