Photolyases and Cryptochromes in UV‐resistant Bacteria from High‐altitude Andean Lakes

“High‐altitude Andean Lakes” (HAAL) are pristine environments harboring poly‐extremophilic microbes that show combined adaptations to physical and chemical stress such as large daily ambient thermal amplitude, extreme solar radiation levels, intense dryness, alkalinity, high concentrations of arseni...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Photochemistry and photobiology 2019-01, Vol.95 (1), p.315-330
Hauptverfasser: Portero, Luciano Raúl, Alonso‐Reyes, Daniel G., Zannier, Federico, Vazquez, Martín P., Farías, María Eugenia, Gärtner, Wolfgang, Albarracín, Virginia Helena
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 330
container_issue 1
container_start_page 315
container_title Photochemistry and photobiology
container_volume 95
creator Portero, Luciano Raúl
Alonso‐Reyes, Daniel G.
Zannier, Federico
Vazquez, Martín P.
Farías, María Eugenia
Gärtner, Wolfgang
Albarracín, Virginia Helena
description “High‐altitude Andean Lakes” (HAAL) are pristine environments harboring poly‐extremophilic microbes that show combined adaptations to physical and chemical stress such as large daily ambient thermal amplitude, extreme solar radiation levels, intense dryness, alkalinity, high concentrations of arsenic (up to 200 ppm) and dissolved salts. In this work, we compared the UV resistance profiles, pigment content and photoreactivation abilities of three UV‐resistant bacteria isolated from distinct niches from HAALs, that is Acinetobacter sp. Ver3 (water, Lake Verde; 4400 m), Exiguobacterium sp. S17 (stromatolite, Lake Socompa, 3570 m) and Nesterenkonia sp. Act20 (soil, Lake Socompa, 3570 m). UV resistance ability of HAAL's strains indicate a clear adaptation to high radiation exposure encountered in their original habitat, which can be explained by genetic and physiological mechanisms named as the UV‐resistome. Thus, the UV‐resistome depends on the expression of a diverse set of genes devoted to evading or repairing the damage it provoked direct or indirectly. As pigment extraction and photoreactive assays indicate the presence of photoactive molecules, we characterized more in detail proteins with homology to photolyases/cryptochromes members (CPF). Phylogenetic analyses, sequence comparison and 3D modeling with bona fide CPF members were used to prove the presence of functional domains and key residues in the novel proteins. High‐altitude Andean Lakes (HAAL) are pristine environments suffering from the highest solar radiation levels on Earth among other extreme conditions. In this work, we compared the UV resistance profiles, pigment content and photoreactivation abilities of three HAAL′s bacteria and explained these features as part of the so‐called UV‐resistome. Pigment extraction indicates the presence of carotenoid‐like compounds in S17 and Act20 cells suggesting an antioxidative defense or protective role for them. On the other hand, photoreactivation upon UV‐B damage was efficient in all three strains; consequently, we found proteins with homology to photolyases/cryptochromes (CPF) in Ver3, Act20 and S17 genomes.
doi_str_mv 10.1111/php.13061
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2139583995</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2139583995</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3881-1176f7e6d2195e44c87f2893745a6445fc0db314438ed7b6ea55e2e75fd8caa93</originalsourceid><addsrcrecordid>eNp10LFOwzAQBmALgWgpDLwAisQCQ1o7tmN7hAooUiU6UAaWyE0uJCVNgp0IZeMReEaeBEMKAxK3WDp_-nX6ETomeEzcTOqsHhOKQ7KDhkRw4hOsxC4aYkyJL0POB-jA2jXGhClB9tGAYiY5Y-EQPS6yqqmKTluwni4Tb2q6uqnizFQbt8lLb_nw8fZuwOa20WXjXeq4AZNrL3XCm-VPmfvWRZM3bQLeRZmALr25fgZ7iPZSXVg42r4jtLy-up_O_Pndze30Yu7HVEp3KxFhKiBMAqI4MBZLkQZSUcG4DhnjaYyTFSWMUQmJWIWgOYcABE8TGWut6Aid9bm1qV5asE20yW0MRaFLqFobBYQqLqlS3NHTP3RdtaZ01zklsFQ4CAOnznsVm8paA2lUm3yjTRcRHH0VHrnCo-_CnT3ZJrarDSS_8qdhByY9eM0L6P5PihazRR_5CUR4ix4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2170890262</pqid></control><display><type>article</type><title>Photolyases and Cryptochromes in UV‐resistant Bacteria from High‐altitude Andean Lakes</title><source>MEDLINE</source><source>Wiley Online Library All Journals</source><creator>Portero, Luciano Raúl ; Alonso‐Reyes, Daniel G. ; Zannier, Federico ; Vazquez, Martín P. ; Farías, María Eugenia ; Gärtner, Wolfgang ; Albarracín, Virginia Helena</creator><creatorcontrib>Portero, Luciano Raúl ; Alonso‐Reyes, Daniel G. ; Zannier, Federico ; Vazquez, Martín P. ; Farías, María Eugenia ; Gärtner, Wolfgang ; Albarracín, Virginia Helena</creatorcontrib><description>“High‐altitude Andean Lakes” (HAAL) are pristine environments harboring poly‐extremophilic microbes that show combined adaptations to physical and chemical stress such as large daily ambient thermal amplitude, extreme solar radiation levels, intense dryness, alkalinity, high concentrations of arsenic (up to 200 ppm) and dissolved salts. In this work, we compared the UV resistance profiles, pigment content and photoreactivation abilities of three UV‐resistant bacteria isolated from distinct niches from HAALs, that is Acinetobacter sp. Ver3 (water, Lake Verde; 4400 m), Exiguobacterium sp. S17 (stromatolite, Lake Socompa, 3570 m) and Nesterenkonia sp. Act20 (soil, Lake Socompa, 3570 m). UV resistance ability of HAAL's strains indicate a clear adaptation to high radiation exposure encountered in their original habitat, which can be explained by genetic and physiological mechanisms named as the UV‐resistome. Thus, the UV‐resistome depends on the expression of a diverse set of genes devoted to evading or repairing the damage it provoked direct or indirectly. As pigment extraction and photoreactive assays indicate the presence of photoactive molecules, we characterized more in detail proteins with homology to photolyases/cryptochromes members (CPF). Phylogenetic analyses, sequence comparison and 3D modeling with bona fide CPF members were used to prove the presence of functional domains and key residues in the novel proteins. High‐altitude Andean Lakes (HAAL) are pristine environments suffering from the highest solar radiation levels on Earth among other extreme conditions. In this work, we compared the UV resistance profiles, pigment content and photoreactivation abilities of three HAAL′s bacteria and explained these features as part of the so‐called UV‐resistome. Pigment extraction indicates the presence of carotenoid‐like compounds in S17 and Act20 cells suggesting an antioxidative defense or protective role for them. On the other hand, photoreactivation upon UV‐B damage was efficient in all three strains; consequently, we found proteins with homology to photolyases/cryptochromes (CPF) in Ver3, Act20 and S17 genomes.</description><identifier>ISSN: 0031-8655</identifier><identifier>EISSN: 1751-1097</identifier><identifier>DOI: 10.1111/php.13061</identifier><identifier>PMID: 30485446</identifier><language>eng</language><publisher>United States: Blackwell Publishing Ltd</publisher><subject>Acinetobacter - metabolism ; Acinetobacter - radiation effects ; Adaptation ; Alkalinity ; Altitude ; Arsenic ; Bacillales - metabolism ; Bacillales - radiation effects ; Bacteria ; Cryptochromes ; Cryptochromes - metabolism ; Deoxyribodipyrimidine Photo-Lyase - metabolism ; Dissolved salts ; Domains ; Gene expression ; Homology ; Lakes ; Lakes - microbiology ; Maintenance ; Micrococcaceae - metabolism ; Micrococcaceae - radiation effects ; Organic chemistry ; Photoreactivation ; Phylogeny ; Proteins ; Radiation effects ; Radiation measurement ; Radiation Tolerance ; Salts ; Solar radiation ; South America ; Three dimensional models ; Ultraviolet Rays</subject><ispartof>Photochemistry and photobiology, 2019-01, Vol.95 (1), p.315-330</ispartof><rights>2018 The American Society of Photobiology</rights><rights>2018 The American Society of Photobiology.</rights><rights>2019 American Society for Photobiology</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3881-1176f7e6d2195e44c87f2893745a6445fc0db314438ed7b6ea55e2e75fd8caa93</citedby><cites>FETCH-LOGICAL-c3881-1176f7e6d2195e44c87f2893745a6445fc0db314438ed7b6ea55e2e75fd8caa93</cites><orcidid>0000-0002-4316-0720 ; 0000-0002-6898-7011</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fphp.13061$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fphp.13061$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30485446$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Portero, Luciano Raúl</creatorcontrib><creatorcontrib>Alonso‐Reyes, Daniel G.</creatorcontrib><creatorcontrib>Zannier, Federico</creatorcontrib><creatorcontrib>Vazquez, Martín P.</creatorcontrib><creatorcontrib>Farías, María Eugenia</creatorcontrib><creatorcontrib>Gärtner, Wolfgang</creatorcontrib><creatorcontrib>Albarracín, Virginia Helena</creatorcontrib><title>Photolyases and Cryptochromes in UV‐resistant Bacteria from High‐altitude Andean Lakes</title><title>Photochemistry and photobiology</title><addtitle>Photochem Photobiol</addtitle><description>“High‐altitude Andean Lakes” (HAAL) are pristine environments harboring poly‐extremophilic microbes that show combined adaptations to physical and chemical stress such as large daily ambient thermal amplitude, extreme solar radiation levels, intense dryness, alkalinity, high concentrations of arsenic (up to 200 ppm) and dissolved salts. In this work, we compared the UV resistance profiles, pigment content and photoreactivation abilities of three UV‐resistant bacteria isolated from distinct niches from HAALs, that is Acinetobacter sp. Ver3 (water, Lake Verde; 4400 m), Exiguobacterium sp. S17 (stromatolite, Lake Socompa, 3570 m) and Nesterenkonia sp. Act20 (soil, Lake Socompa, 3570 m). UV resistance ability of HAAL's strains indicate a clear adaptation to high radiation exposure encountered in their original habitat, which can be explained by genetic and physiological mechanisms named as the UV‐resistome. Thus, the UV‐resistome depends on the expression of a diverse set of genes devoted to evading or repairing the damage it provoked direct or indirectly. As pigment extraction and photoreactive assays indicate the presence of photoactive molecules, we characterized more in detail proteins with homology to photolyases/cryptochromes members (CPF). Phylogenetic analyses, sequence comparison and 3D modeling with bona fide CPF members were used to prove the presence of functional domains and key residues in the novel proteins. High‐altitude Andean Lakes (HAAL) are pristine environments suffering from the highest solar radiation levels on Earth among other extreme conditions. In this work, we compared the UV resistance profiles, pigment content and photoreactivation abilities of three HAAL′s bacteria and explained these features as part of the so‐called UV‐resistome. Pigment extraction indicates the presence of carotenoid‐like compounds in S17 and Act20 cells suggesting an antioxidative defense or protective role for them. On the other hand, photoreactivation upon UV‐B damage was efficient in all three strains; consequently, we found proteins with homology to photolyases/cryptochromes (CPF) in Ver3, Act20 and S17 genomes.</description><subject>Acinetobacter - metabolism</subject><subject>Acinetobacter - radiation effects</subject><subject>Adaptation</subject><subject>Alkalinity</subject><subject>Altitude</subject><subject>Arsenic</subject><subject>Bacillales - metabolism</subject><subject>Bacillales - radiation effects</subject><subject>Bacteria</subject><subject>Cryptochromes</subject><subject>Cryptochromes - metabolism</subject><subject>Deoxyribodipyrimidine Photo-Lyase - metabolism</subject><subject>Dissolved salts</subject><subject>Domains</subject><subject>Gene expression</subject><subject>Homology</subject><subject>Lakes</subject><subject>Lakes - microbiology</subject><subject>Maintenance</subject><subject>Micrococcaceae - metabolism</subject><subject>Micrococcaceae - radiation effects</subject><subject>Organic chemistry</subject><subject>Photoreactivation</subject><subject>Phylogeny</subject><subject>Proteins</subject><subject>Radiation effects</subject><subject>Radiation measurement</subject><subject>Radiation Tolerance</subject><subject>Salts</subject><subject>Solar radiation</subject><subject>South America</subject><subject>Three dimensional models</subject><subject>Ultraviolet Rays</subject><issn>0031-8655</issn><issn>1751-1097</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp10LFOwzAQBmALgWgpDLwAisQCQ1o7tmN7hAooUiU6UAaWyE0uJCVNgp0IZeMReEaeBEMKAxK3WDp_-nX6ETomeEzcTOqsHhOKQ7KDhkRw4hOsxC4aYkyJL0POB-jA2jXGhClB9tGAYiY5Y-EQPS6yqqmKTluwni4Tb2q6uqnizFQbt8lLb_nw8fZuwOa20WXjXeq4AZNrL3XCm-VPmfvWRZM3bQLeRZmALr25fgZ7iPZSXVg42r4jtLy-up_O_Pndze30Yu7HVEp3KxFhKiBMAqI4MBZLkQZSUcG4DhnjaYyTFSWMUQmJWIWgOYcABE8TGWut6Aid9bm1qV5asE20yW0MRaFLqFobBYQqLqlS3NHTP3RdtaZ01zklsFQ4CAOnznsVm8paA2lUm3yjTRcRHH0VHrnCo-_CnT3ZJrarDSS_8qdhByY9eM0L6P5PihazRR_5CUR4ix4</recordid><startdate>201901</startdate><enddate>201901</enddate><creator>Portero, Luciano Raúl</creator><creator>Alonso‐Reyes, Daniel G.</creator><creator>Zannier, Federico</creator><creator>Vazquez, Martín P.</creator><creator>Farías, María Eugenia</creator><creator>Gärtner, Wolfgang</creator><creator>Albarracín, Virginia Helena</creator><general>Blackwell Publishing Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>4T-</scope><scope>7TM</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4316-0720</orcidid><orcidid>https://orcid.org/0000-0002-6898-7011</orcidid></search><sort><creationdate>201901</creationdate><title>Photolyases and Cryptochromes in UV‐resistant Bacteria from High‐altitude Andean Lakes</title><author>Portero, Luciano Raúl ; Alonso‐Reyes, Daniel G. ; Zannier, Federico ; Vazquez, Martín P. ; Farías, María Eugenia ; Gärtner, Wolfgang ; Albarracín, Virginia Helena</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3881-1176f7e6d2195e44c87f2893745a6445fc0db314438ed7b6ea55e2e75fd8caa93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Acinetobacter - metabolism</topic><topic>Acinetobacter - radiation effects</topic><topic>Adaptation</topic><topic>Alkalinity</topic><topic>Altitude</topic><topic>Arsenic</topic><topic>Bacillales - metabolism</topic><topic>Bacillales - radiation effects</topic><topic>Bacteria</topic><topic>Cryptochromes</topic><topic>Cryptochromes - metabolism</topic><topic>Deoxyribodipyrimidine Photo-Lyase - metabolism</topic><topic>Dissolved salts</topic><topic>Domains</topic><topic>Gene expression</topic><topic>Homology</topic><topic>Lakes</topic><topic>Lakes - microbiology</topic><topic>Maintenance</topic><topic>Micrococcaceae - metabolism</topic><topic>Micrococcaceae - radiation effects</topic><topic>Organic chemistry</topic><topic>Photoreactivation</topic><topic>Phylogeny</topic><topic>Proteins</topic><topic>Radiation effects</topic><topic>Radiation measurement</topic><topic>Radiation Tolerance</topic><topic>Salts</topic><topic>Solar radiation</topic><topic>South America</topic><topic>Three dimensional models</topic><topic>Ultraviolet Rays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Portero, Luciano Raúl</creatorcontrib><creatorcontrib>Alonso‐Reyes, Daniel G.</creatorcontrib><creatorcontrib>Zannier, Federico</creatorcontrib><creatorcontrib>Vazquez, Martín P.</creatorcontrib><creatorcontrib>Farías, María Eugenia</creatorcontrib><creatorcontrib>Gärtner, Wolfgang</creatorcontrib><creatorcontrib>Albarracín, Virginia Helena</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Docstoc</collection><collection>Nucleic Acids Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Photochemistry and photobiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Portero, Luciano Raúl</au><au>Alonso‐Reyes, Daniel G.</au><au>Zannier, Federico</au><au>Vazquez, Martín P.</au><au>Farías, María Eugenia</au><au>Gärtner, Wolfgang</au><au>Albarracín, Virginia Helena</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Photolyases and Cryptochromes in UV‐resistant Bacteria from High‐altitude Andean Lakes</atitle><jtitle>Photochemistry and photobiology</jtitle><addtitle>Photochem Photobiol</addtitle><date>2019-01</date><risdate>2019</risdate><volume>95</volume><issue>1</issue><spage>315</spage><epage>330</epage><pages>315-330</pages><issn>0031-8655</issn><eissn>1751-1097</eissn><abstract>“High‐altitude Andean Lakes” (HAAL) are pristine environments harboring poly‐extremophilic microbes that show combined adaptations to physical and chemical stress such as large daily ambient thermal amplitude, extreme solar radiation levels, intense dryness, alkalinity, high concentrations of arsenic (up to 200 ppm) and dissolved salts. In this work, we compared the UV resistance profiles, pigment content and photoreactivation abilities of three UV‐resistant bacteria isolated from distinct niches from HAALs, that is Acinetobacter sp. Ver3 (water, Lake Verde; 4400 m), Exiguobacterium sp. S17 (stromatolite, Lake Socompa, 3570 m) and Nesterenkonia sp. Act20 (soil, Lake Socompa, 3570 m). UV resistance ability of HAAL's strains indicate a clear adaptation to high radiation exposure encountered in their original habitat, which can be explained by genetic and physiological mechanisms named as the UV‐resistome. Thus, the UV‐resistome depends on the expression of a diverse set of genes devoted to evading or repairing the damage it provoked direct or indirectly. As pigment extraction and photoreactive assays indicate the presence of photoactive molecules, we characterized more in detail proteins with homology to photolyases/cryptochromes members (CPF). Phylogenetic analyses, sequence comparison and 3D modeling with bona fide CPF members were used to prove the presence of functional domains and key residues in the novel proteins. High‐altitude Andean Lakes (HAAL) are pristine environments suffering from the highest solar radiation levels on Earth among other extreme conditions. In this work, we compared the UV resistance profiles, pigment content and photoreactivation abilities of three HAAL′s bacteria and explained these features as part of the so‐called UV‐resistome. Pigment extraction indicates the presence of carotenoid‐like compounds in S17 and Act20 cells suggesting an antioxidative defense or protective role for them. On the other hand, photoreactivation upon UV‐B damage was efficient in all three strains; consequently, we found proteins with homology to photolyases/cryptochromes (CPF) in Ver3, Act20 and S17 genomes.</abstract><cop>United States</cop><pub>Blackwell Publishing Ltd</pub><pmid>30485446</pmid><doi>10.1111/php.13061</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-4316-0720</orcidid><orcidid>https://orcid.org/0000-0002-6898-7011</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0031-8655
ispartof Photochemistry and photobiology, 2019-01, Vol.95 (1), p.315-330
issn 0031-8655
1751-1097
language eng
recordid cdi_proquest_miscellaneous_2139583995
source MEDLINE; Wiley Online Library All Journals
subjects Acinetobacter - metabolism
Acinetobacter - radiation effects
Adaptation
Alkalinity
Altitude
Arsenic
Bacillales - metabolism
Bacillales - radiation effects
Bacteria
Cryptochromes
Cryptochromes - metabolism
Deoxyribodipyrimidine Photo-Lyase - metabolism
Dissolved salts
Domains
Gene expression
Homology
Lakes
Lakes - microbiology
Maintenance
Micrococcaceae - metabolism
Micrococcaceae - radiation effects
Organic chemistry
Photoreactivation
Phylogeny
Proteins
Radiation effects
Radiation measurement
Radiation Tolerance
Salts
Solar radiation
South America
Three dimensional models
Ultraviolet Rays
title Photolyases and Cryptochromes in UV‐resistant Bacteria from High‐altitude Andean Lakes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T11%3A18%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Photolyases%20and%20Cryptochromes%20in%20UV%E2%80%90resistant%20Bacteria%20from%20High%E2%80%90altitude%20Andean%20Lakes&rft.jtitle=Photochemistry%20and%20photobiology&rft.au=Portero,%20Luciano%20Ra%C3%BAl&rft.date=2019-01&rft.volume=95&rft.issue=1&rft.spage=315&rft.epage=330&rft.pages=315-330&rft.issn=0031-8655&rft.eissn=1751-1097&rft_id=info:doi/10.1111/php.13061&rft_dat=%3Cproquest_cross%3E2139583995%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2170890262&rft_id=info:pmid/30485446&rfr_iscdi=true