Photolyases and Cryptochromes in UV‐resistant Bacteria from High‐altitude Andean Lakes
“High‐altitude Andean Lakes” (HAAL) are pristine environments harboring poly‐extremophilic microbes that show combined adaptations to physical and chemical stress such as large daily ambient thermal amplitude, extreme solar radiation levels, intense dryness, alkalinity, high concentrations of arseni...
Gespeichert in:
Veröffentlicht in: | Photochemistry and photobiology 2019-01, Vol.95 (1), p.315-330 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 330 |
---|---|
container_issue | 1 |
container_start_page | 315 |
container_title | Photochemistry and photobiology |
container_volume | 95 |
creator | Portero, Luciano Raúl Alonso‐Reyes, Daniel G. Zannier, Federico Vazquez, Martín P. Farías, María Eugenia Gärtner, Wolfgang Albarracín, Virginia Helena |
description | “High‐altitude Andean Lakes” (HAAL) are pristine environments harboring poly‐extremophilic microbes that show combined adaptations to physical and chemical stress such as large daily ambient thermal amplitude, extreme solar radiation levels, intense dryness, alkalinity, high concentrations of arsenic (up to 200 ppm) and dissolved salts. In this work, we compared the UV resistance profiles, pigment content and photoreactivation abilities of three UV‐resistant bacteria isolated from distinct niches from HAALs, that is Acinetobacter sp. Ver3 (water, Lake Verde; 4400 m), Exiguobacterium sp. S17 (stromatolite, Lake Socompa, 3570 m) and Nesterenkonia sp. Act20 (soil, Lake Socompa, 3570 m). UV resistance ability of HAAL's strains indicate a clear adaptation to high radiation exposure encountered in their original habitat, which can be explained by genetic and physiological mechanisms named as the UV‐resistome. Thus, the UV‐resistome depends on the expression of a diverse set of genes devoted to evading or repairing the damage it provoked direct or indirectly. As pigment extraction and photoreactive assays indicate the presence of photoactive molecules, we characterized more in detail proteins with homology to photolyases/cryptochromes members (CPF). Phylogenetic analyses, sequence comparison and 3D modeling with bona fide CPF members were used to prove the presence of functional domains and key residues in the novel proteins.
High‐altitude Andean Lakes (HAAL) are pristine environments suffering from the highest solar radiation levels on Earth among other extreme conditions. In this work, we compared the UV resistance profiles, pigment content and photoreactivation abilities of three HAAL′s bacteria and explained these features as part of the so‐called UV‐resistome. Pigment extraction indicates the presence of carotenoid‐like compounds in S17 and Act20 cells suggesting an antioxidative defense or protective role for them. On the other hand, photoreactivation upon UV‐B damage was efficient in all three strains; consequently, we found proteins with homology to photolyases/cryptochromes (CPF) in Ver3, Act20 and S17 genomes. |
doi_str_mv | 10.1111/php.13061 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2139583995</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2139583995</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3881-1176f7e6d2195e44c87f2893745a6445fc0db314438ed7b6ea55e2e75fd8caa93</originalsourceid><addsrcrecordid>eNp10LFOwzAQBmALgWgpDLwAisQCQ1o7tmN7hAooUiU6UAaWyE0uJCVNgp0IZeMReEaeBEMKAxK3WDp_-nX6ETomeEzcTOqsHhOKQ7KDhkRw4hOsxC4aYkyJL0POB-jA2jXGhClB9tGAYiY5Y-EQPS6yqqmKTluwni4Tb2q6uqnizFQbt8lLb_nw8fZuwOa20WXjXeq4AZNrL3XCm-VPmfvWRZM3bQLeRZmALr25fgZ7iPZSXVg42r4jtLy-up_O_Pndze30Yu7HVEp3KxFhKiBMAqI4MBZLkQZSUcG4DhnjaYyTFSWMUQmJWIWgOYcABE8TGWut6Aid9bm1qV5asE20yW0MRaFLqFobBYQqLqlS3NHTP3RdtaZ01zklsFQ4CAOnznsVm8paA2lUm3yjTRcRHH0VHrnCo-_CnT3ZJrarDSS_8qdhByY9eM0L6P5PihazRR_5CUR4ix4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2170890262</pqid></control><display><type>article</type><title>Photolyases and Cryptochromes in UV‐resistant Bacteria from High‐altitude Andean Lakes</title><source>MEDLINE</source><source>Wiley Online Library All Journals</source><creator>Portero, Luciano Raúl ; Alonso‐Reyes, Daniel G. ; Zannier, Federico ; Vazquez, Martín P. ; Farías, María Eugenia ; Gärtner, Wolfgang ; Albarracín, Virginia Helena</creator><creatorcontrib>Portero, Luciano Raúl ; Alonso‐Reyes, Daniel G. ; Zannier, Federico ; Vazquez, Martín P. ; Farías, María Eugenia ; Gärtner, Wolfgang ; Albarracín, Virginia Helena</creatorcontrib><description>“High‐altitude Andean Lakes” (HAAL) are pristine environments harboring poly‐extremophilic microbes that show combined adaptations to physical and chemical stress such as large daily ambient thermal amplitude, extreme solar radiation levels, intense dryness, alkalinity, high concentrations of arsenic (up to 200 ppm) and dissolved salts. In this work, we compared the UV resistance profiles, pigment content and photoreactivation abilities of three UV‐resistant bacteria isolated from distinct niches from HAALs, that is Acinetobacter sp. Ver3 (water, Lake Verde; 4400 m), Exiguobacterium sp. S17 (stromatolite, Lake Socompa, 3570 m) and Nesterenkonia sp. Act20 (soil, Lake Socompa, 3570 m). UV resistance ability of HAAL's strains indicate a clear adaptation to high radiation exposure encountered in their original habitat, which can be explained by genetic and physiological mechanisms named as the UV‐resistome. Thus, the UV‐resistome depends on the expression of a diverse set of genes devoted to evading or repairing the damage it provoked direct or indirectly. As pigment extraction and photoreactive assays indicate the presence of photoactive molecules, we characterized more in detail proteins with homology to photolyases/cryptochromes members (CPF). Phylogenetic analyses, sequence comparison and 3D modeling with bona fide CPF members were used to prove the presence of functional domains and key residues in the novel proteins.
High‐altitude Andean Lakes (HAAL) are pristine environments suffering from the highest solar radiation levels on Earth among other extreme conditions. In this work, we compared the UV resistance profiles, pigment content and photoreactivation abilities of three HAAL′s bacteria and explained these features as part of the so‐called UV‐resistome. Pigment extraction indicates the presence of carotenoid‐like compounds in S17 and Act20 cells suggesting an antioxidative defense or protective role for them. On the other hand, photoreactivation upon UV‐B damage was efficient in all three strains; consequently, we found proteins with homology to photolyases/cryptochromes (CPF) in Ver3, Act20 and S17 genomes.</description><identifier>ISSN: 0031-8655</identifier><identifier>EISSN: 1751-1097</identifier><identifier>DOI: 10.1111/php.13061</identifier><identifier>PMID: 30485446</identifier><language>eng</language><publisher>United States: Blackwell Publishing Ltd</publisher><subject>Acinetobacter - metabolism ; Acinetobacter - radiation effects ; Adaptation ; Alkalinity ; Altitude ; Arsenic ; Bacillales - metabolism ; Bacillales - radiation effects ; Bacteria ; Cryptochromes ; Cryptochromes - metabolism ; Deoxyribodipyrimidine Photo-Lyase - metabolism ; Dissolved salts ; Domains ; Gene expression ; Homology ; Lakes ; Lakes - microbiology ; Maintenance ; Micrococcaceae - metabolism ; Micrococcaceae - radiation effects ; Organic chemistry ; Photoreactivation ; Phylogeny ; Proteins ; Radiation effects ; Radiation measurement ; Radiation Tolerance ; Salts ; Solar radiation ; South America ; Three dimensional models ; Ultraviolet Rays</subject><ispartof>Photochemistry and photobiology, 2019-01, Vol.95 (1), p.315-330</ispartof><rights>2018 The American Society of Photobiology</rights><rights>2018 The American Society of Photobiology.</rights><rights>2019 American Society for Photobiology</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3881-1176f7e6d2195e44c87f2893745a6445fc0db314438ed7b6ea55e2e75fd8caa93</citedby><cites>FETCH-LOGICAL-c3881-1176f7e6d2195e44c87f2893745a6445fc0db314438ed7b6ea55e2e75fd8caa93</cites><orcidid>0000-0002-4316-0720 ; 0000-0002-6898-7011</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fphp.13061$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fphp.13061$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30485446$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Portero, Luciano Raúl</creatorcontrib><creatorcontrib>Alonso‐Reyes, Daniel G.</creatorcontrib><creatorcontrib>Zannier, Federico</creatorcontrib><creatorcontrib>Vazquez, Martín P.</creatorcontrib><creatorcontrib>Farías, María Eugenia</creatorcontrib><creatorcontrib>Gärtner, Wolfgang</creatorcontrib><creatorcontrib>Albarracín, Virginia Helena</creatorcontrib><title>Photolyases and Cryptochromes in UV‐resistant Bacteria from High‐altitude Andean Lakes</title><title>Photochemistry and photobiology</title><addtitle>Photochem Photobiol</addtitle><description>“High‐altitude Andean Lakes” (HAAL) are pristine environments harboring poly‐extremophilic microbes that show combined adaptations to physical and chemical stress such as large daily ambient thermal amplitude, extreme solar radiation levels, intense dryness, alkalinity, high concentrations of arsenic (up to 200 ppm) and dissolved salts. In this work, we compared the UV resistance profiles, pigment content and photoreactivation abilities of three UV‐resistant bacteria isolated from distinct niches from HAALs, that is Acinetobacter sp. Ver3 (water, Lake Verde; 4400 m), Exiguobacterium sp. S17 (stromatolite, Lake Socompa, 3570 m) and Nesterenkonia sp. Act20 (soil, Lake Socompa, 3570 m). UV resistance ability of HAAL's strains indicate a clear adaptation to high radiation exposure encountered in their original habitat, which can be explained by genetic and physiological mechanisms named as the UV‐resistome. Thus, the UV‐resistome depends on the expression of a diverse set of genes devoted to evading or repairing the damage it provoked direct or indirectly. As pigment extraction and photoreactive assays indicate the presence of photoactive molecules, we characterized more in detail proteins with homology to photolyases/cryptochromes members (CPF). Phylogenetic analyses, sequence comparison and 3D modeling with bona fide CPF members were used to prove the presence of functional domains and key residues in the novel proteins.
High‐altitude Andean Lakes (HAAL) are pristine environments suffering from the highest solar radiation levels on Earth among other extreme conditions. In this work, we compared the UV resistance profiles, pigment content and photoreactivation abilities of three HAAL′s bacteria and explained these features as part of the so‐called UV‐resistome. Pigment extraction indicates the presence of carotenoid‐like compounds in S17 and Act20 cells suggesting an antioxidative defense or protective role for them. On the other hand, photoreactivation upon UV‐B damage was efficient in all three strains; consequently, we found proteins with homology to photolyases/cryptochromes (CPF) in Ver3, Act20 and S17 genomes.</description><subject>Acinetobacter - metabolism</subject><subject>Acinetobacter - radiation effects</subject><subject>Adaptation</subject><subject>Alkalinity</subject><subject>Altitude</subject><subject>Arsenic</subject><subject>Bacillales - metabolism</subject><subject>Bacillales - radiation effects</subject><subject>Bacteria</subject><subject>Cryptochromes</subject><subject>Cryptochromes - metabolism</subject><subject>Deoxyribodipyrimidine Photo-Lyase - metabolism</subject><subject>Dissolved salts</subject><subject>Domains</subject><subject>Gene expression</subject><subject>Homology</subject><subject>Lakes</subject><subject>Lakes - microbiology</subject><subject>Maintenance</subject><subject>Micrococcaceae - metabolism</subject><subject>Micrococcaceae - radiation effects</subject><subject>Organic chemistry</subject><subject>Photoreactivation</subject><subject>Phylogeny</subject><subject>Proteins</subject><subject>Radiation effects</subject><subject>Radiation measurement</subject><subject>Radiation Tolerance</subject><subject>Salts</subject><subject>Solar radiation</subject><subject>South America</subject><subject>Three dimensional models</subject><subject>Ultraviolet Rays</subject><issn>0031-8655</issn><issn>1751-1097</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp10LFOwzAQBmALgWgpDLwAisQCQ1o7tmN7hAooUiU6UAaWyE0uJCVNgp0IZeMReEaeBEMKAxK3WDp_-nX6ETomeEzcTOqsHhOKQ7KDhkRw4hOsxC4aYkyJL0POB-jA2jXGhClB9tGAYiY5Y-EQPS6yqqmKTluwni4Tb2q6uqnizFQbt8lLb_nw8fZuwOa20WXjXeq4AZNrL3XCm-VPmfvWRZM3bQLeRZmALr25fgZ7iPZSXVg42r4jtLy-up_O_Pndze30Yu7HVEp3KxFhKiBMAqI4MBZLkQZSUcG4DhnjaYyTFSWMUQmJWIWgOYcABE8TGWut6Aid9bm1qV5asE20yW0MRaFLqFobBYQqLqlS3NHTP3RdtaZ01zklsFQ4CAOnznsVm8paA2lUm3yjTRcRHH0VHrnCo-_CnT3ZJrarDSS_8qdhByY9eM0L6P5PihazRR_5CUR4ix4</recordid><startdate>201901</startdate><enddate>201901</enddate><creator>Portero, Luciano Raúl</creator><creator>Alonso‐Reyes, Daniel G.</creator><creator>Zannier, Federico</creator><creator>Vazquez, Martín P.</creator><creator>Farías, María Eugenia</creator><creator>Gärtner, Wolfgang</creator><creator>Albarracín, Virginia Helena</creator><general>Blackwell Publishing Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>4T-</scope><scope>7TM</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4316-0720</orcidid><orcidid>https://orcid.org/0000-0002-6898-7011</orcidid></search><sort><creationdate>201901</creationdate><title>Photolyases and Cryptochromes in UV‐resistant Bacteria from High‐altitude Andean Lakes</title><author>Portero, Luciano Raúl ; Alonso‐Reyes, Daniel G. ; Zannier, Federico ; Vazquez, Martín P. ; Farías, María Eugenia ; Gärtner, Wolfgang ; Albarracín, Virginia Helena</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3881-1176f7e6d2195e44c87f2893745a6445fc0db314438ed7b6ea55e2e75fd8caa93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Acinetobacter - metabolism</topic><topic>Acinetobacter - radiation effects</topic><topic>Adaptation</topic><topic>Alkalinity</topic><topic>Altitude</topic><topic>Arsenic</topic><topic>Bacillales - metabolism</topic><topic>Bacillales - radiation effects</topic><topic>Bacteria</topic><topic>Cryptochromes</topic><topic>Cryptochromes - metabolism</topic><topic>Deoxyribodipyrimidine Photo-Lyase - metabolism</topic><topic>Dissolved salts</topic><topic>Domains</topic><topic>Gene expression</topic><topic>Homology</topic><topic>Lakes</topic><topic>Lakes - microbiology</topic><topic>Maintenance</topic><topic>Micrococcaceae - metabolism</topic><topic>Micrococcaceae - radiation effects</topic><topic>Organic chemistry</topic><topic>Photoreactivation</topic><topic>Phylogeny</topic><topic>Proteins</topic><topic>Radiation effects</topic><topic>Radiation measurement</topic><topic>Radiation Tolerance</topic><topic>Salts</topic><topic>Solar radiation</topic><topic>South America</topic><topic>Three dimensional models</topic><topic>Ultraviolet Rays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Portero, Luciano Raúl</creatorcontrib><creatorcontrib>Alonso‐Reyes, Daniel G.</creatorcontrib><creatorcontrib>Zannier, Federico</creatorcontrib><creatorcontrib>Vazquez, Martín P.</creatorcontrib><creatorcontrib>Farías, María Eugenia</creatorcontrib><creatorcontrib>Gärtner, Wolfgang</creatorcontrib><creatorcontrib>Albarracín, Virginia Helena</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Docstoc</collection><collection>Nucleic Acids Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Photochemistry and photobiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Portero, Luciano Raúl</au><au>Alonso‐Reyes, Daniel G.</au><au>Zannier, Federico</au><au>Vazquez, Martín P.</au><au>Farías, María Eugenia</au><au>Gärtner, Wolfgang</au><au>Albarracín, Virginia Helena</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Photolyases and Cryptochromes in UV‐resistant Bacteria from High‐altitude Andean Lakes</atitle><jtitle>Photochemistry and photobiology</jtitle><addtitle>Photochem Photobiol</addtitle><date>2019-01</date><risdate>2019</risdate><volume>95</volume><issue>1</issue><spage>315</spage><epage>330</epage><pages>315-330</pages><issn>0031-8655</issn><eissn>1751-1097</eissn><abstract>“High‐altitude Andean Lakes” (HAAL) are pristine environments harboring poly‐extremophilic microbes that show combined adaptations to physical and chemical stress such as large daily ambient thermal amplitude, extreme solar radiation levels, intense dryness, alkalinity, high concentrations of arsenic (up to 200 ppm) and dissolved salts. In this work, we compared the UV resistance profiles, pigment content and photoreactivation abilities of three UV‐resistant bacteria isolated from distinct niches from HAALs, that is Acinetobacter sp. Ver3 (water, Lake Verde; 4400 m), Exiguobacterium sp. S17 (stromatolite, Lake Socompa, 3570 m) and Nesterenkonia sp. Act20 (soil, Lake Socompa, 3570 m). UV resistance ability of HAAL's strains indicate a clear adaptation to high radiation exposure encountered in their original habitat, which can be explained by genetic and physiological mechanisms named as the UV‐resistome. Thus, the UV‐resistome depends on the expression of a diverse set of genes devoted to evading or repairing the damage it provoked direct or indirectly. As pigment extraction and photoreactive assays indicate the presence of photoactive molecules, we characterized more in detail proteins with homology to photolyases/cryptochromes members (CPF). Phylogenetic analyses, sequence comparison and 3D modeling with bona fide CPF members were used to prove the presence of functional domains and key residues in the novel proteins.
High‐altitude Andean Lakes (HAAL) are pristine environments suffering from the highest solar radiation levels on Earth among other extreme conditions. In this work, we compared the UV resistance profiles, pigment content and photoreactivation abilities of three HAAL′s bacteria and explained these features as part of the so‐called UV‐resistome. Pigment extraction indicates the presence of carotenoid‐like compounds in S17 and Act20 cells suggesting an antioxidative defense or protective role for them. On the other hand, photoreactivation upon UV‐B damage was efficient in all three strains; consequently, we found proteins with homology to photolyases/cryptochromes (CPF) in Ver3, Act20 and S17 genomes.</abstract><cop>United States</cop><pub>Blackwell Publishing Ltd</pub><pmid>30485446</pmid><doi>10.1111/php.13061</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-4316-0720</orcidid><orcidid>https://orcid.org/0000-0002-6898-7011</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0031-8655 |
ispartof | Photochemistry and photobiology, 2019-01, Vol.95 (1), p.315-330 |
issn | 0031-8655 1751-1097 |
language | eng |
recordid | cdi_proquest_miscellaneous_2139583995 |
source | MEDLINE; Wiley Online Library All Journals |
subjects | Acinetobacter - metabolism Acinetobacter - radiation effects Adaptation Alkalinity Altitude Arsenic Bacillales - metabolism Bacillales - radiation effects Bacteria Cryptochromes Cryptochromes - metabolism Deoxyribodipyrimidine Photo-Lyase - metabolism Dissolved salts Domains Gene expression Homology Lakes Lakes - microbiology Maintenance Micrococcaceae - metabolism Micrococcaceae - radiation effects Organic chemistry Photoreactivation Phylogeny Proteins Radiation effects Radiation measurement Radiation Tolerance Salts Solar radiation South America Three dimensional models Ultraviolet Rays |
title | Photolyases and Cryptochromes in UV‐resistant Bacteria from High‐altitude Andean Lakes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T11%3A18%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Photolyases%20and%20Cryptochromes%20in%20UV%E2%80%90resistant%20Bacteria%20from%20High%E2%80%90altitude%20Andean%20Lakes&rft.jtitle=Photochemistry%20and%20photobiology&rft.au=Portero,%20Luciano%20Ra%C3%BAl&rft.date=2019-01&rft.volume=95&rft.issue=1&rft.spage=315&rft.epage=330&rft.pages=315-330&rft.issn=0031-8655&rft.eissn=1751-1097&rft_id=info:doi/10.1111/php.13061&rft_dat=%3Cproquest_cross%3E2139583995%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2170890262&rft_id=info:pmid/30485446&rfr_iscdi=true |