MicroRNA156 amplifies transcription factor-associated cold stress tolerance in plant cells

MicroRNAs may increase cold stress tolerance by regulating stress-related signal transduction pathways and by modulating the expression of transcription factors. However, the molecular mechanism by which microRNAs enhance cold stress tolerance is not fully understood. Here, we report that overexpres...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular genetics and genomics : MGG 2019-04, Vol.294 (2), p.379-393
Hauptverfasser: Zhou, Mingqin, Tang, Wei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 393
container_issue 2
container_start_page 379
container_title Molecular genetics and genomics : MGG
container_volume 294
creator Zhou, Mingqin
Tang, Wei
description MicroRNAs may increase cold stress tolerance by regulating stress-related signal transduction pathways and by modulating the expression of transcription factors. However, the molecular mechanism by which microRNAs enhance cold stress tolerance is not fully understood. Here, we report that overexpression of rice microRNA156 (OsmiR156) results in increased cell viability and growth rate under cold stress in Arabidopsis, pine, and rice. OsmiR156 increases cold stress tolerance by targeting OsSPL3. OsSPL3 positively regulates the expression of OsWRKY71, a negative regulator of the transcription factors OsMYB2 and OsMYB3R-2. OsMYB2 counteracts cold stress by activating the expression of the stress-response genes OsLEA3, OsRab16A, and OsDREB2A. OsMYB3R-2 counteracts cold stress by activating the expression of OsKNOLLE2, OsCTP1, OsCycB1.1, OsCycB2.1, and OsCDC20.1. In OsmiR156 transgenic rice cell lines, the transcript levels of OsLEA3, OsRab16A, OsDREB2A, OsKNOLLE2, OsCTP1, OsCycB1.1, OsCycB2.1, and OsCDC20.1 were increased by OsWRKY71 knockdown and inversely regulated by OsWRKY71 overexpression, indicating that OsmiR156 enhances cold stress tolerance by regulating the expression of transcription factor genes in plant cells. These results will increase our understanding of microRNA-related cold stress tolerance in different plant species, including monocotyledonous, dicotyledonous, and gymnosperm plant species, and will be valuable in plant molecular biotechnology.
doi_str_mv 10.1007/s00438-018-1516-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2138649727</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2137639564</sourcerecordid><originalsourceid>FETCH-LOGICAL-c438t-5f35cafe513660b19625223fe793cb99baa5d9714b61c62aac702b53355ca6273</originalsourceid><addsrcrecordid>eNp1kM1KAzEURoMotlYfwI0MuHEzmptMks6yiH9QFUQ3bkImzUjKdDLmThe-vRlbFQRXCeR8N989hBwDPQdK1QVSWvBpTmGagwCZFztkDBJUXkjGd3_uIEbkAHFJKSjJ1D4ZcVqoqWBsTF7vvY3h6WEGQmZm1TW-9g6zPpoWbfRd70Ob1cb2IeYGMVhverfIbGgWGfbRYWJD4xJuXebbrGtM22fWNQ0ekr3aNOiOtueEvFxfPV_e5vPHm7vL2Ty3qXyfi5oLa2ongEtJKyglS8147VTJbVWWlTFiUSooKglWMmOsoqwSnIsUS-vwCTnbzO1ieF877PXK49DAtC6sUTPgU1mU6gs9_YMuwzq2qd1AKclLIYtEwYZKZhCjq3UX_crEDw1UD-L1RrxO4vUgXg-Zk-3kdbVyi5_Et-kEsA2A6al9c_H36_-nfgKy5ozy</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2137639564</pqid></control><display><type>article</type><title>MicroRNA156 amplifies transcription factor-associated cold stress tolerance in plant cells</title><source>MEDLINE</source><source>SpringerNature Journals</source><creator>Zhou, Mingqin ; Tang, Wei</creator><creatorcontrib>Zhou, Mingqin ; Tang, Wei</creatorcontrib><description>MicroRNAs may increase cold stress tolerance by regulating stress-related signal transduction pathways and by modulating the expression of transcription factors. However, the molecular mechanism by which microRNAs enhance cold stress tolerance is not fully understood. Here, we report that overexpression of rice microRNA156 (OsmiR156) results in increased cell viability and growth rate under cold stress in Arabidopsis, pine, and rice. OsmiR156 increases cold stress tolerance by targeting OsSPL3. OsSPL3 positively regulates the expression of OsWRKY71, a negative regulator of the transcription factors OsMYB2 and OsMYB3R-2. OsMYB2 counteracts cold stress by activating the expression of the stress-response genes OsLEA3, OsRab16A, and OsDREB2A. OsMYB3R-2 counteracts cold stress by activating the expression of OsKNOLLE2, OsCTP1, OsCycB1.1, OsCycB2.1, and OsCDC20.1. In OsmiR156 transgenic rice cell lines, the transcript levels of OsLEA3, OsRab16A, OsDREB2A, OsKNOLLE2, OsCTP1, OsCycB1.1, OsCycB2.1, and OsCDC20.1 were increased by OsWRKY71 knockdown and inversely regulated by OsWRKY71 overexpression, indicating that OsmiR156 enhances cold stress tolerance by regulating the expression of transcription factor genes in plant cells. These results will increase our understanding of microRNA-related cold stress tolerance in different plant species, including monocotyledonous, dicotyledonous, and gymnosperm plant species, and will be valuable in plant molecular biotechnology.</description><identifier>ISSN: 1617-4615</identifier><identifier>EISSN: 1617-4623</identifier><identifier>DOI: 10.1007/s00438-018-1516-4</identifier><identifier>PMID: 30478522</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Animal Genetics and Genomics ; Arabidopsis - genetics ; Biochemistry ; Biomedical and Life Sciences ; Biotechnology ; Cell lines ; Cellular stress response ; Cold ; Cold Temperature ; Cold tolerance ; Cold-Shock Response - genetics ; Flowers &amp; plants ; Gene Expression Regulation, Plant - genetics ; Gene Knockdown Techniques ; Growth rate ; Human Genetics ; Life Sciences ; Microbial Genetics and Genomics ; MicroRNAs ; MicroRNAs - genetics ; miRNA ; Original Article ; Oryza ; Oryza - genetics ; Oryza - growth &amp; development ; Plant cells ; Plant Cells - metabolism ; Plant Genetics and Genomics ; Plant Proteins - genetics ; Plants, Genetically Modified - genetics ; Plants, Genetically Modified - growth &amp; development ; Signal transduction ; Transcription factors ; Transcription Factors - genetics ; Transduction</subject><ispartof>Molecular genetics and genomics : MGG, 2019-04, Vol.294 (2), p.379-393</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2018</rights><rights>Molecular Genetics and Genomics is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c438t-5f35cafe513660b19625223fe793cb99baa5d9714b61c62aac702b53355ca6273</citedby><cites>FETCH-LOGICAL-c438t-5f35cafe513660b19625223fe793cb99baa5d9714b61c62aac702b53355ca6273</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00438-018-1516-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00438-018-1516-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27928,27929,41492,42561,51323</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30478522$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhou, Mingqin</creatorcontrib><creatorcontrib>Tang, Wei</creatorcontrib><title>MicroRNA156 amplifies transcription factor-associated cold stress tolerance in plant cells</title><title>Molecular genetics and genomics : MGG</title><addtitle>Mol Genet Genomics</addtitle><addtitle>Mol Genet Genomics</addtitle><description>MicroRNAs may increase cold stress tolerance by regulating stress-related signal transduction pathways and by modulating the expression of transcription factors. However, the molecular mechanism by which microRNAs enhance cold stress tolerance is not fully understood. Here, we report that overexpression of rice microRNA156 (OsmiR156) results in increased cell viability and growth rate under cold stress in Arabidopsis, pine, and rice. OsmiR156 increases cold stress tolerance by targeting OsSPL3. OsSPL3 positively regulates the expression of OsWRKY71, a negative regulator of the transcription factors OsMYB2 and OsMYB3R-2. OsMYB2 counteracts cold stress by activating the expression of the stress-response genes OsLEA3, OsRab16A, and OsDREB2A. OsMYB3R-2 counteracts cold stress by activating the expression of OsKNOLLE2, OsCTP1, OsCycB1.1, OsCycB2.1, and OsCDC20.1. In OsmiR156 transgenic rice cell lines, the transcript levels of OsLEA3, OsRab16A, OsDREB2A, OsKNOLLE2, OsCTP1, OsCycB1.1, OsCycB2.1, and OsCDC20.1 were increased by OsWRKY71 knockdown and inversely regulated by OsWRKY71 overexpression, indicating that OsmiR156 enhances cold stress tolerance by regulating the expression of transcription factor genes in plant cells. These results will increase our understanding of microRNA-related cold stress tolerance in different plant species, including monocotyledonous, dicotyledonous, and gymnosperm plant species, and will be valuable in plant molecular biotechnology.</description><subject>Animal Genetics and Genomics</subject><subject>Arabidopsis - genetics</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Biotechnology</subject><subject>Cell lines</subject><subject>Cellular stress response</subject><subject>Cold</subject><subject>Cold Temperature</subject><subject>Cold tolerance</subject><subject>Cold-Shock Response - genetics</subject><subject>Flowers &amp; plants</subject><subject>Gene Expression Regulation, Plant - genetics</subject><subject>Gene Knockdown Techniques</subject><subject>Growth rate</subject><subject>Human Genetics</subject><subject>Life Sciences</subject><subject>Microbial Genetics and Genomics</subject><subject>MicroRNAs</subject><subject>MicroRNAs - genetics</subject><subject>miRNA</subject><subject>Original Article</subject><subject>Oryza</subject><subject>Oryza - genetics</subject><subject>Oryza - growth &amp; development</subject><subject>Plant cells</subject><subject>Plant Cells - metabolism</subject><subject>Plant Genetics and Genomics</subject><subject>Plant Proteins - genetics</subject><subject>Plants, Genetically Modified - genetics</subject><subject>Plants, Genetically Modified - growth &amp; development</subject><subject>Signal transduction</subject><subject>Transcription factors</subject><subject>Transcription Factors - genetics</subject><subject>Transduction</subject><issn>1617-4615</issn><issn>1617-4623</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kM1KAzEURoMotlYfwI0MuHEzmptMks6yiH9QFUQ3bkImzUjKdDLmThe-vRlbFQRXCeR8N989hBwDPQdK1QVSWvBpTmGagwCZFztkDBJUXkjGd3_uIEbkAHFJKSjJ1D4ZcVqoqWBsTF7vvY3h6WEGQmZm1TW-9g6zPpoWbfRd70Ob1cb2IeYGMVhverfIbGgWGfbRYWJD4xJuXebbrGtM22fWNQ0ekr3aNOiOtueEvFxfPV_e5vPHm7vL2Ty3qXyfi5oLa2ongEtJKyglS8147VTJbVWWlTFiUSooKglWMmOsoqwSnIsUS-vwCTnbzO1ieF877PXK49DAtC6sUTPgU1mU6gs9_YMuwzq2qd1AKclLIYtEwYZKZhCjq3UX_crEDw1UD-L1RrxO4vUgXg-Zk-3kdbVyi5_Et-kEsA2A6al9c_H36_-nfgKy5ozy</recordid><startdate>20190401</startdate><enddate>20190401</enddate><creator>Zhou, Mingqin</creator><creator>Tang, Wei</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20190401</creationdate><title>MicroRNA156 amplifies transcription factor-associated cold stress tolerance in plant cells</title><author>Zhou, Mingqin ; Tang, Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c438t-5f35cafe513660b19625223fe793cb99baa5d9714b61c62aac702b53355ca6273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Animal Genetics and Genomics</topic><topic>Arabidopsis - genetics</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Biotechnology</topic><topic>Cell lines</topic><topic>Cellular stress response</topic><topic>Cold</topic><topic>Cold Temperature</topic><topic>Cold tolerance</topic><topic>Cold-Shock Response - genetics</topic><topic>Flowers &amp; plants</topic><topic>Gene Expression Regulation, Plant - genetics</topic><topic>Gene Knockdown Techniques</topic><topic>Growth rate</topic><topic>Human Genetics</topic><topic>Life Sciences</topic><topic>Microbial Genetics and Genomics</topic><topic>MicroRNAs</topic><topic>MicroRNAs - genetics</topic><topic>miRNA</topic><topic>Original Article</topic><topic>Oryza</topic><topic>Oryza - genetics</topic><topic>Oryza - growth &amp; development</topic><topic>Plant cells</topic><topic>Plant Cells - metabolism</topic><topic>Plant Genetics and Genomics</topic><topic>Plant Proteins - genetics</topic><topic>Plants, Genetically Modified - genetics</topic><topic>Plants, Genetically Modified - growth &amp; development</topic><topic>Signal transduction</topic><topic>Transcription factors</topic><topic>Transcription Factors - genetics</topic><topic>Transduction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Mingqin</creatorcontrib><creatorcontrib>Tang, Wei</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Molecular genetics and genomics : MGG</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Mingqin</au><au>Tang, Wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MicroRNA156 amplifies transcription factor-associated cold stress tolerance in plant cells</atitle><jtitle>Molecular genetics and genomics : MGG</jtitle><stitle>Mol Genet Genomics</stitle><addtitle>Mol Genet Genomics</addtitle><date>2019-04-01</date><risdate>2019</risdate><volume>294</volume><issue>2</issue><spage>379</spage><epage>393</epage><pages>379-393</pages><issn>1617-4615</issn><eissn>1617-4623</eissn><abstract>MicroRNAs may increase cold stress tolerance by regulating stress-related signal transduction pathways and by modulating the expression of transcription factors. However, the molecular mechanism by which microRNAs enhance cold stress tolerance is not fully understood. Here, we report that overexpression of rice microRNA156 (OsmiR156) results in increased cell viability and growth rate under cold stress in Arabidopsis, pine, and rice. OsmiR156 increases cold stress tolerance by targeting OsSPL3. OsSPL3 positively regulates the expression of OsWRKY71, a negative regulator of the transcription factors OsMYB2 and OsMYB3R-2. OsMYB2 counteracts cold stress by activating the expression of the stress-response genes OsLEA3, OsRab16A, and OsDREB2A. OsMYB3R-2 counteracts cold stress by activating the expression of OsKNOLLE2, OsCTP1, OsCycB1.1, OsCycB2.1, and OsCDC20.1. In OsmiR156 transgenic rice cell lines, the transcript levels of OsLEA3, OsRab16A, OsDREB2A, OsKNOLLE2, OsCTP1, OsCycB1.1, OsCycB2.1, and OsCDC20.1 were increased by OsWRKY71 knockdown and inversely regulated by OsWRKY71 overexpression, indicating that OsmiR156 enhances cold stress tolerance by regulating the expression of transcription factor genes in plant cells. These results will increase our understanding of microRNA-related cold stress tolerance in different plant species, including monocotyledonous, dicotyledonous, and gymnosperm plant species, and will be valuable in plant molecular biotechnology.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>30478522</pmid><doi>10.1007/s00438-018-1516-4</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1617-4615
ispartof Molecular genetics and genomics : MGG, 2019-04, Vol.294 (2), p.379-393
issn 1617-4615
1617-4623
language eng
recordid cdi_proquest_miscellaneous_2138649727
source MEDLINE; SpringerNature Journals
subjects Animal Genetics and Genomics
Arabidopsis - genetics
Biochemistry
Biomedical and Life Sciences
Biotechnology
Cell lines
Cellular stress response
Cold
Cold Temperature
Cold tolerance
Cold-Shock Response - genetics
Flowers & plants
Gene Expression Regulation, Plant - genetics
Gene Knockdown Techniques
Growth rate
Human Genetics
Life Sciences
Microbial Genetics and Genomics
MicroRNAs
MicroRNAs - genetics
miRNA
Original Article
Oryza
Oryza - genetics
Oryza - growth & development
Plant cells
Plant Cells - metabolism
Plant Genetics and Genomics
Plant Proteins - genetics
Plants, Genetically Modified - genetics
Plants, Genetically Modified - growth & development
Signal transduction
Transcription factors
Transcription Factors - genetics
Transduction
title MicroRNA156 amplifies transcription factor-associated cold stress tolerance in plant cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T15%3A20%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MicroRNA156%20amplifies%20transcription%20factor-associated%20cold%20stress%20tolerance%20in%20plant%20cells&rft.jtitle=Molecular%20genetics%20and%20genomics%20:%20MGG&rft.au=Zhou,%20Mingqin&rft.date=2019-04-01&rft.volume=294&rft.issue=2&rft.spage=379&rft.epage=393&rft.pages=379-393&rft.issn=1617-4615&rft.eissn=1617-4623&rft_id=info:doi/10.1007/s00438-018-1516-4&rft_dat=%3Cproquest_cross%3E2137639564%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2137639564&rft_id=info:pmid/30478522&rfr_iscdi=true