Microbially Synthesized Repeats of Mussel Foot Protein Display Enhanced Underwater Adhesion

Mussels strongly adhere to a variety of surfaces by secreting byssal threads that contain mussel foot proteins (Mfps). Recombinant production of Mfps presents an attractive route for preparing advanced adhesive materials. Using synthetic biology strategies, we synthesized Mfp5 together with Mfp5 oli...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2018-12, Vol.10 (49), p.43003-43012
Hauptverfasser: Kim, Eugene, Dai, Bin, Qiao, James B, Li, Wenlu, Fortner, John D, Zhang, Fuzhong
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 43012
container_issue 49
container_start_page 43003
container_title ACS applied materials & interfaces
container_volume 10
creator Kim, Eugene
Dai, Bin
Qiao, James B
Li, Wenlu
Fortner, John D
Zhang, Fuzhong
description Mussels strongly adhere to a variety of surfaces by secreting byssal threads that contain mussel foot proteins (Mfps). Recombinant production of Mfps presents an attractive route for preparing advanced adhesive materials. Using synthetic biology strategies, we synthesized Mfp5 together with Mfp5 oligomers containing two or three consecutive, covalently-linked Mfp5 sequences named Mfp5(2) and Mfp5(3). The force and work of adhesion of these proteins were measured underwater with a colloidal probe mounted on an atomic force microscope and the adsorption was measured with a quartz crystal microbalance. We found positive correlations between Mfp5 molecular weight and underwater adhesive properties, including force of adhesion, work of adhesion, protein layer thickness, and recovery distance. DOPA-modified Mfp5(3) displayed a high force of adhesion (201 ± 36 nN μm–1) and a high work of adhesion (68 ± 21 fJ μm–1) for a cure time of 200 s, which are higher than those of previously reported Mfp-mimetic adhesives. Results presented in this study highlight the power of synthetic biology in producing biocompatible and highly adhesive Mfp-based materials.
doi_str_mv 10.1021/acsami.8b14890
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2138642116</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2138642116</sourcerecordid><originalsourceid>FETCH-LOGICAL-a330t-1e0231156d1a9d53ce15bf07d0a581541f70d0592e5c8f347cb5c6d6e2a910fe3</originalsourceid><addsrcrecordid>eNp1kE1PwkAURSdGI4huXZpZGhNw3nyUdkkQ1ASiUVm5aKad11DSdnCmjcFfb0mRnav3Fufe5B5CroGNgHG416nXZT4KE5BhxE5IHyIphyFX_PT4S9kjF95vGAsEZ-qc9ASTIZOc98nnMk-dTXJdFDv6vqvqNfr8Bw19wy3q2lOb0WXjPRZ0bm1NX52tMa_oQ-63hd7RWbXWVdryq8qg-9Y1Ojox-xJbXZKzTBcerw53QFbz2cf0abh4eXyeThZDLQSrh4CMCwAVGNCRUSJFUEnGxoZpFYKSkI2ZYSriqNIwE3KcJioNTIBcR8AyFANy2_Vunf1q0NdxmfsUi0JXaBsfcxBhIDlA0KKjDm1He-8wi7cuL7XbxcDivdC4ExofhLaBm0N3k5RojvifwRa464A2GG9s46p26n9tv-WpgI0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2138642116</pqid></control><display><type>article</type><title>Microbially Synthesized Repeats of Mussel Foot Protein Display Enhanced Underwater Adhesion</title><source>ACS Publications</source><creator>Kim, Eugene ; Dai, Bin ; Qiao, James B ; Li, Wenlu ; Fortner, John D ; Zhang, Fuzhong</creator><creatorcontrib>Kim, Eugene ; Dai, Bin ; Qiao, James B ; Li, Wenlu ; Fortner, John D ; Zhang, Fuzhong</creatorcontrib><description>Mussels strongly adhere to a variety of surfaces by secreting byssal threads that contain mussel foot proteins (Mfps). Recombinant production of Mfps presents an attractive route for preparing advanced adhesive materials. Using synthetic biology strategies, we synthesized Mfp5 together with Mfp5 oligomers containing two or three consecutive, covalently-linked Mfp5 sequences named Mfp5(2) and Mfp5(3). The force and work of adhesion of these proteins were measured underwater with a colloidal probe mounted on an atomic force microscope and the adsorption was measured with a quartz crystal microbalance. We found positive correlations between Mfp5 molecular weight and underwater adhesive properties, including force of adhesion, work of adhesion, protein layer thickness, and recovery distance. DOPA-modified Mfp5(3) displayed a high force of adhesion (201 ± 36 nN μm–1) and a high work of adhesion (68 ± 21 fJ μm–1) for a cure time of 200 s, which are higher than those of previously reported Mfp-mimetic adhesives. Results presented in this study highlight the power of synthetic biology in producing biocompatible and highly adhesive Mfp-based materials.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.8b14890</identifier><identifier>PMID: 30480422</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>ACS applied materials &amp; interfaces, 2018-12, Vol.10 (49), p.43003-43012</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a330t-1e0231156d1a9d53ce15bf07d0a581541f70d0592e5c8f347cb5c6d6e2a910fe3</citedby><cites>FETCH-LOGICAL-a330t-1e0231156d1a9d53ce15bf07d0a581541f70d0592e5c8f347cb5c6d6e2a910fe3</cites><orcidid>0000-0003-3938-1624 ; 0000-0001-6979-7909</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.8b14890$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.8b14890$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30480422$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kim, Eugene</creatorcontrib><creatorcontrib>Dai, Bin</creatorcontrib><creatorcontrib>Qiao, James B</creatorcontrib><creatorcontrib>Li, Wenlu</creatorcontrib><creatorcontrib>Fortner, John D</creatorcontrib><creatorcontrib>Zhang, Fuzhong</creatorcontrib><title>Microbially Synthesized Repeats of Mussel Foot Protein Display Enhanced Underwater Adhesion</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>Mussels strongly adhere to a variety of surfaces by secreting byssal threads that contain mussel foot proteins (Mfps). Recombinant production of Mfps presents an attractive route for preparing advanced adhesive materials. Using synthetic biology strategies, we synthesized Mfp5 together with Mfp5 oligomers containing two or three consecutive, covalently-linked Mfp5 sequences named Mfp5(2) and Mfp5(3). The force and work of adhesion of these proteins were measured underwater with a colloidal probe mounted on an atomic force microscope and the adsorption was measured with a quartz crystal microbalance. We found positive correlations between Mfp5 molecular weight and underwater adhesive properties, including force of adhesion, work of adhesion, protein layer thickness, and recovery distance. DOPA-modified Mfp5(3) displayed a high force of adhesion (201 ± 36 nN μm–1) and a high work of adhesion (68 ± 21 fJ μm–1) for a cure time of 200 s, which are higher than those of previously reported Mfp-mimetic adhesives. Results presented in this study highlight the power of synthetic biology in producing biocompatible and highly adhesive Mfp-based materials.</description><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kE1PwkAURSdGI4huXZpZGhNw3nyUdkkQ1ASiUVm5aKad11DSdnCmjcFfb0mRnav3Fufe5B5CroGNgHG416nXZT4KE5BhxE5IHyIphyFX_PT4S9kjF95vGAsEZ-qc9ASTIZOc98nnMk-dTXJdFDv6vqvqNfr8Bw19wy3q2lOb0WXjPRZ0bm1NX52tMa_oQ-63hd7RWbXWVdryq8qg-9Y1Ojox-xJbXZKzTBcerw53QFbz2cf0abh4eXyeThZDLQSrh4CMCwAVGNCRUSJFUEnGxoZpFYKSkI2ZYSriqNIwE3KcJioNTIBcR8AyFANy2_Vunf1q0NdxmfsUi0JXaBsfcxBhIDlA0KKjDm1He-8wi7cuL7XbxcDivdC4ExofhLaBm0N3k5RojvifwRa464A2GG9s46p26n9tv-WpgI0</recordid><startdate>20181212</startdate><enddate>20181212</enddate><creator>Kim, Eugene</creator><creator>Dai, Bin</creator><creator>Qiao, James B</creator><creator>Li, Wenlu</creator><creator>Fortner, John D</creator><creator>Zhang, Fuzhong</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3938-1624</orcidid><orcidid>https://orcid.org/0000-0001-6979-7909</orcidid></search><sort><creationdate>20181212</creationdate><title>Microbially Synthesized Repeats of Mussel Foot Protein Display Enhanced Underwater Adhesion</title><author>Kim, Eugene ; Dai, Bin ; Qiao, James B ; Li, Wenlu ; Fortner, John D ; Zhang, Fuzhong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a330t-1e0231156d1a9d53ce15bf07d0a581541f70d0592e5c8f347cb5c6d6e2a910fe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Eugene</creatorcontrib><creatorcontrib>Dai, Bin</creatorcontrib><creatorcontrib>Qiao, James B</creatorcontrib><creatorcontrib>Li, Wenlu</creatorcontrib><creatorcontrib>Fortner, John D</creatorcontrib><creatorcontrib>Zhang, Fuzhong</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Eugene</au><au>Dai, Bin</au><au>Qiao, James B</au><au>Li, Wenlu</au><au>Fortner, John D</au><au>Zhang, Fuzhong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microbially Synthesized Repeats of Mussel Foot Protein Display Enhanced Underwater Adhesion</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2018-12-12</date><risdate>2018</risdate><volume>10</volume><issue>49</issue><spage>43003</spage><epage>43012</epage><pages>43003-43012</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>Mussels strongly adhere to a variety of surfaces by secreting byssal threads that contain mussel foot proteins (Mfps). Recombinant production of Mfps presents an attractive route for preparing advanced adhesive materials. Using synthetic biology strategies, we synthesized Mfp5 together with Mfp5 oligomers containing two or three consecutive, covalently-linked Mfp5 sequences named Mfp5(2) and Mfp5(3). The force and work of adhesion of these proteins were measured underwater with a colloidal probe mounted on an atomic force microscope and the adsorption was measured with a quartz crystal microbalance. We found positive correlations between Mfp5 molecular weight and underwater adhesive properties, including force of adhesion, work of adhesion, protein layer thickness, and recovery distance. DOPA-modified Mfp5(3) displayed a high force of adhesion (201 ± 36 nN μm–1) and a high work of adhesion (68 ± 21 fJ μm–1) for a cure time of 200 s, which are higher than those of previously reported Mfp-mimetic adhesives. Results presented in this study highlight the power of synthetic biology in producing biocompatible and highly adhesive Mfp-based materials.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>30480422</pmid><doi>10.1021/acsami.8b14890</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-3938-1624</orcidid><orcidid>https://orcid.org/0000-0001-6979-7909</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2018-12, Vol.10 (49), p.43003-43012
issn 1944-8244
1944-8252
language eng
recordid cdi_proquest_miscellaneous_2138642116
source ACS Publications
title Microbially Synthesized Repeats of Mussel Foot Protein Display Enhanced Underwater Adhesion
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T21%3A28%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microbially%20Synthesized%20Repeats%20of%20Mussel%20Foot%20Protein%20Display%20Enhanced%20Underwater%20Adhesion&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Kim,%20Eugene&rft.date=2018-12-12&rft.volume=10&rft.issue=49&rft.spage=43003&rft.epage=43012&rft.pages=43003-43012&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.8b14890&rft_dat=%3Cproquest_cross%3E2138642116%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2138642116&rft_id=info:pmid/30480422&rfr_iscdi=true