Collagen Functionalized With Graphene Oxide Enhanced Biomimetic Mineralization and in Situ Bone Defect Repair

Biomimetic mineralization using simulated body fluid (SBF) can form a bonelike apatite (Ap) on the natural polymers and enhance osteoconductivity and biocompatibility, and reduce immunological rejection. Nevertheless, the coating efficiency of the bonelike apatite layer on natural polymers still nee...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2018-12, Vol.10 (50), p.44080-44091
Hauptverfasser: Zhou, Chuchao, Liu, Shaokai, Li, Jialun, Guo, Ke, Yuan, Quan, Zhong, Aimei, Yang, Jie, Wang, Jiecong, Sun, Jiaming, Wang, Zhenxing
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 44091
container_issue 50
container_start_page 44080
container_title ACS applied materials & interfaces
container_volume 10
creator Zhou, Chuchao
Liu, Shaokai
Li, Jialun
Guo, Ke
Yuan, Quan
Zhong, Aimei
Yang, Jie
Wang, Jiecong
Sun, Jiaming
Wang, Zhenxing
description Biomimetic mineralization using simulated body fluid (SBF) can form a bonelike apatite (Ap) on the natural polymers and enhance osteoconductivity and biocompatibility, and reduce immunological rejection. Nevertheless, the coating efficiency of the bonelike apatite layer on natural polymers still needs to be improved. Graphene oxide (GO) is rich in functional groups, such as carbonyls (−COOH) and hydroxyls (−OH), which can provide more active sites for biomimetic mineralization and improve the proliferation of the rat bone marrow stromal cells (r-BMSCs). In this study, we introduced 0%, 0.05%, 0.1%, and 0.2% w/v concentrations of GO into collagen (Col) scaffolds and immersed the fabricated scaffolds into SBF for 1, 7, and 14 days. In vitro environment scanning electron microscopy (ESEM), energy-dispersive spectrometry (EDS), thermogravimetric analysis (TGA), micro-CT, calcium quantitative analysis, and cellular analysis were used to evaluate the formation of bonelike apatite on the scaffolds. In vivo implantation of the scaffolds into the rat cranial defect was used to analyze the bone regeneration ability. The resulting GO–Col–Ap scaffolds exhibited a porous and interconnected structure coated with a homogeneous distribution of bonelike apatite on their surfaces. The Ca/P ratio of 0.1% GO–Col–Ap group was equal to that of natural bone tissue on the basis of EDS analysis. More apatites were observed in the 0.1% GO–Col–Ap group through TGA analysis, micro-CT evaluation, and calcium quantitative analysis. Furthermore, the 0.1% GO–Col–Ap group showed significantly higher r-BMSCs adhesion and proliferation in vitro and more than 2-fold higher bone formation than the Col–Ap group in vivo. Our study provides a new approach of introducing graphene oxide into bone tissue engineering scaffolds to enhance biomimetic mineralization.
doi_str_mv 10.1021/acsami.8b17636
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2138636965</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2138636965</sourcerecordid><originalsourceid>FETCH-LOGICAL-a330t-5fe10e5d925b8bb614631124baa90c518967a4373c3b2b62f2ad265fb720c9483</originalsourceid><addsrcrecordid>eNp1kM1LwzAYh4MoOqdXj5KjCJv5bnvUOacwEfzAY0nSty6ypjNpQf3rzdj05imBPM8P8iB0QsmYEkYvtI26cePc0ExxtYMGtBBilDPJdv_uQhygwxjfCVGcEbmPDjgRmZSZGqBm0i6X-g08vum97Vzr9dJ9Q4VfXbfAs6BXC_CAHz5dBXjqF9rb9Hjl2sY10DmL752HsHb0WsbaV9h5_OS6Hl-1ybyGGmyHH2GlXThCe7VeRjjenkP0cjN9ntyO5g-zu8nlfKQ5J91I1kAJyKpg0uTGKCoUp5QJo3VBrKR5oTIteMYtN8woVjNdMSVrkzFiC5HzITrb7K5C-9FD7MrGRQvppx7aPpaM8jzlKpRM6HiD2tDGGKAuV8E1OnyVlJTrxOUmcblNnITT7XZvGqj-8N-mCTjfAEks39s-pKTxv7UfvrSGUA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2138636965</pqid></control><display><type>article</type><title>Collagen Functionalized With Graphene Oxide Enhanced Biomimetic Mineralization and in Situ Bone Defect Repair</title><source>ACS Publications</source><creator>Zhou, Chuchao ; Liu, Shaokai ; Li, Jialun ; Guo, Ke ; Yuan, Quan ; Zhong, Aimei ; Yang, Jie ; Wang, Jiecong ; Sun, Jiaming ; Wang, Zhenxing</creator><creatorcontrib>Zhou, Chuchao ; Liu, Shaokai ; Li, Jialun ; Guo, Ke ; Yuan, Quan ; Zhong, Aimei ; Yang, Jie ; Wang, Jiecong ; Sun, Jiaming ; Wang, Zhenxing</creatorcontrib><description>Biomimetic mineralization using simulated body fluid (SBF) can form a bonelike apatite (Ap) on the natural polymers and enhance osteoconductivity and biocompatibility, and reduce immunological rejection. Nevertheless, the coating efficiency of the bonelike apatite layer on natural polymers still needs to be improved. Graphene oxide (GO) is rich in functional groups, such as carbonyls (−COOH) and hydroxyls (−OH), which can provide more active sites for biomimetic mineralization and improve the proliferation of the rat bone marrow stromal cells (r-BMSCs). In this study, we introduced 0%, 0.05%, 0.1%, and 0.2% w/v concentrations of GO into collagen (Col) scaffolds and immersed the fabricated scaffolds into SBF for 1, 7, and 14 days. In vitro environment scanning electron microscopy (ESEM), energy-dispersive spectrometry (EDS), thermogravimetric analysis (TGA), micro-CT, calcium quantitative analysis, and cellular analysis were used to evaluate the formation of bonelike apatite on the scaffolds. In vivo implantation of the scaffolds into the rat cranial defect was used to analyze the bone regeneration ability. The resulting GO–Col–Ap scaffolds exhibited a porous and interconnected structure coated with a homogeneous distribution of bonelike apatite on their surfaces. The Ca/P ratio of 0.1% GO–Col–Ap group was equal to that of natural bone tissue on the basis of EDS analysis. More apatites were observed in the 0.1% GO–Col–Ap group through TGA analysis, micro-CT evaluation, and calcium quantitative analysis. Furthermore, the 0.1% GO–Col–Ap group showed significantly higher r-BMSCs adhesion and proliferation in vitro and more than 2-fold higher bone formation than the Col–Ap group in vivo. Our study provides a new approach of introducing graphene oxide into bone tissue engineering scaffolds to enhance biomimetic mineralization.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.8b17636</identifier><identifier>PMID: 30475576</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>ACS applied materials &amp; interfaces, 2018-12, Vol.10 (50), p.44080-44091</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a330t-5fe10e5d925b8bb614631124baa90c518967a4373c3b2b62f2ad265fb720c9483</citedby><cites>FETCH-LOGICAL-a330t-5fe10e5d925b8bb614631124baa90c518967a4373c3b2b62f2ad265fb720c9483</cites><orcidid>0000-0002-2436-0372</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.8b17636$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.8b17636$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2751,27055,27903,27904,56716,56766</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30475576$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhou, Chuchao</creatorcontrib><creatorcontrib>Liu, Shaokai</creatorcontrib><creatorcontrib>Li, Jialun</creatorcontrib><creatorcontrib>Guo, Ke</creatorcontrib><creatorcontrib>Yuan, Quan</creatorcontrib><creatorcontrib>Zhong, Aimei</creatorcontrib><creatorcontrib>Yang, Jie</creatorcontrib><creatorcontrib>Wang, Jiecong</creatorcontrib><creatorcontrib>Sun, Jiaming</creatorcontrib><creatorcontrib>Wang, Zhenxing</creatorcontrib><title>Collagen Functionalized With Graphene Oxide Enhanced Biomimetic Mineralization and in Situ Bone Defect Repair</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>Biomimetic mineralization using simulated body fluid (SBF) can form a bonelike apatite (Ap) on the natural polymers and enhance osteoconductivity and biocompatibility, and reduce immunological rejection. Nevertheless, the coating efficiency of the bonelike apatite layer on natural polymers still needs to be improved. Graphene oxide (GO) is rich in functional groups, such as carbonyls (−COOH) and hydroxyls (−OH), which can provide more active sites for biomimetic mineralization and improve the proliferation of the rat bone marrow stromal cells (r-BMSCs). In this study, we introduced 0%, 0.05%, 0.1%, and 0.2% w/v concentrations of GO into collagen (Col) scaffolds and immersed the fabricated scaffolds into SBF for 1, 7, and 14 days. In vitro environment scanning electron microscopy (ESEM), energy-dispersive spectrometry (EDS), thermogravimetric analysis (TGA), micro-CT, calcium quantitative analysis, and cellular analysis were used to evaluate the formation of bonelike apatite on the scaffolds. In vivo implantation of the scaffolds into the rat cranial defect was used to analyze the bone regeneration ability. The resulting GO–Col–Ap scaffolds exhibited a porous and interconnected structure coated with a homogeneous distribution of bonelike apatite on their surfaces. The Ca/P ratio of 0.1% GO–Col–Ap group was equal to that of natural bone tissue on the basis of EDS analysis. More apatites were observed in the 0.1% GO–Col–Ap group through TGA analysis, micro-CT evaluation, and calcium quantitative analysis. Furthermore, the 0.1% GO–Col–Ap group showed significantly higher r-BMSCs adhesion and proliferation in vitro and more than 2-fold higher bone formation than the Col–Ap group in vivo. Our study provides a new approach of introducing graphene oxide into bone tissue engineering scaffolds to enhance biomimetic mineralization.</description><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kM1LwzAYh4MoOqdXj5KjCJv5bnvUOacwEfzAY0nSty6ypjNpQf3rzdj05imBPM8P8iB0QsmYEkYvtI26cePc0ExxtYMGtBBilDPJdv_uQhygwxjfCVGcEbmPDjgRmZSZGqBm0i6X-g08vum97Vzr9dJ9Q4VfXbfAs6BXC_CAHz5dBXjqF9rb9Hjl2sY10DmL752HsHb0WsbaV9h5_OS6Hl-1ybyGGmyHH2GlXThCe7VeRjjenkP0cjN9ntyO5g-zu8nlfKQ5J91I1kAJyKpg0uTGKCoUp5QJo3VBrKR5oTIteMYtN8woVjNdMSVrkzFiC5HzITrb7K5C-9FD7MrGRQvppx7aPpaM8jzlKpRM6HiD2tDGGKAuV8E1OnyVlJTrxOUmcblNnITT7XZvGqj-8N-mCTjfAEks39s-pKTxv7UfvrSGUA</recordid><startdate>20181219</startdate><enddate>20181219</enddate><creator>Zhou, Chuchao</creator><creator>Liu, Shaokai</creator><creator>Li, Jialun</creator><creator>Guo, Ke</creator><creator>Yuan, Quan</creator><creator>Zhong, Aimei</creator><creator>Yang, Jie</creator><creator>Wang, Jiecong</creator><creator>Sun, Jiaming</creator><creator>Wang, Zhenxing</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2436-0372</orcidid></search><sort><creationdate>20181219</creationdate><title>Collagen Functionalized With Graphene Oxide Enhanced Biomimetic Mineralization and in Situ Bone Defect Repair</title><author>Zhou, Chuchao ; Liu, Shaokai ; Li, Jialun ; Guo, Ke ; Yuan, Quan ; Zhong, Aimei ; Yang, Jie ; Wang, Jiecong ; Sun, Jiaming ; Wang, Zhenxing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a330t-5fe10e5d925b8bb614631124baa90c518967a4373c3b2b62f2ad265fb720c9483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Chuchao</creatorcontrib><creatorcontrib>Liu, Shaokai</creatorcontrib><creatorcontrib>Li, Jialun</creatorcontrib><creatorcontrib>Guo, Ke</creatorcontrib><creatorcontrib>Yuan, Quan</creatorcontrib><creatorcontrib>Zhong, Aimei</creatorcontrib><creatorcontrib>Yang, Jie</creatorcontrib><creatorcontrib>Wang, Jiecong</creatorcontrib><creatorcontrib>Sun, Jiaming</creatorcontrib><creatorcontrib>Wang, Zhenxing</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Chuchao</au><au>Liu, Shaokai</au><au>Li, Jialun</au><au>Guo, Ke</au><au>Yuan, Quan</au><au>Zhong, Aimei</au><au>Yang, Jie</au><au>Wang, Jiecong</au><au>Sun, Jiaming</au><au>Wang, Zhenxing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Collagen Functionalized With Graphene Oxide Enhanced Biomimetic Mineralization and in Situ Bone Defect Repair</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2018-12-19</date><risdate>2018</risdate><volume>10</volume><issue>50</issue><spage>44080</spage><epage>44091</epage><pages>44080-44091</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>Biomimetic mineralization using simulated body fluid (SBF) can form a bonelike apatite (Ap) on the natural polymers and enhance osteoconductivity and biocompatibility, and reduce immunological rejection. Nevertheless, the coating efficiency of the bonelike apatite layer on natural polymers still needs to be improved. Graphene oxide (GO) is rich in functional groups, such as carbonyls (−COOH) and hydroxyls (−OH), which can provide more active sites for biomimetic mineralization and improve the proliferation of the rat bone marrow stromal cells (r-BMSCs). In this study, we introduced 0%, 0.05%, 0.1%, and 0.2% w/v concentrations of GO into collagen (Col) scaffolds and immersed the fabricated scaffolds into SBF for 1, 7, and 14 days. In vitro environment scanning electron microscopy (ESEM), energy-dispersive spectrometry (EDS), thermogravimetric analysis (TGA), micro-CT, calcium quantitative analysis, and cellular analysis were used to evaluate the formation of bonelike apatite on the scaffolds. In vivo implantation of the scaffolds into the rat cranial defect was used to analyze the bone regeneration ability. The resulting GO–Col–Ap scaffolds exhibited a porous and interconnected structure coated with a homogeneous distribution of bonelike apatite on their surfaces. The Ca/P ratio of 0.1% GO–Col–Ap group was equal to that of natural bone tissue on the basis of EDS analysis. More apatites were observed in the 0.1% GO–Col–Ap group through TGA analysis, micro-CT evaluation, and calcium quantitative analysis. Furthermore, the 0.1% GO–Col–Ap group showed significantly higher r-BMSCs adhesion and proliferation in vitro and more than 2-fold higher bone formation than the Col–Ap group in vivo. Our study provides a new approach of introducing graphene oxide into bone tissue engineering scaffolds to enhance biomimetic mineralization.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>30475576</pmid><doi>10.1021/acsami.8b17636</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-2436-0372</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2018-12, Vol.10 (50), p.44080-44091
issn 1944-8244
1944-8252
language eng
recordid cdi_proquest_miscellaneous_2138636965
source ACS Publications
title Collagen Functionalized With Graphene Oxide Enhanced Biomimetic Mineralization and in Situ Bone Defect Repair
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T11%3A03%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Collagen%20Functionalized%20With%20Graphene%20Oxide%20Enhanced%20Biomimetic%20Mineralization%20and%20in%20Situ%20Bone%20Defect%20Repair&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Zhou,%20Chuchao&rft.date=2018-12-19&rft.volume=10&rft.issue=50&rft.spage=44080&rft.epage=44091&rft.pages=44080-44091&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.8b17636&rft_dat=%3Cproquest_cross%3E2138636965%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2138636965&rft_id=info:pmid/30475576&rfr_iscdi=true