An improved temperature-triggered process for glutamate production with Corynebacterium glutamicum

An improved glutamate-producing fed-batch process, using a temperature-sensitive strain of Corynebacterium glutamicum, has been characterized. By a tight control of the culture temperature, it was possible to get industrially interesting performance as regards glutamate concentration, yield and prod...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Enzyme and microbial technology 1999-11, Vol.25 (8), p.762-768
Hauptverfasser: Delaunay, S., Gourdon, P., Lapujade, P., Mailly, E., Oriol, E., Engasser, J.M., Lindley, N.D., Goergen, J.-L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 768
container_issue 8
container_start_page 762
container_title Enzyme and microbial technology
container_volume 25
creator Delaunay, S.
Gourdon, P.
Lapujade, P.
Mailly, E.
Oriol, E.
Engasser, J.M.
Lindley, N.D.
Goergen, J.-L.
description An improved glutamate-producing fed-batch process, using a temperature-sensitive strain of Corynebacterium glutamicum, has been characterized. By a tight control of the culture temperature, it was possible to get industrially interesting performance as regards glutamate concentration, yield and productivity. A 24 h fermentation period enabled the production of 85 g/l of glutamate in the production phase induced after a temperature shift from 33°C to 39°C. The maximum specific production rate of glutamate was 0.63 g/g/h with a yield of 0.46 g of glutamate/gram of glucose. The two main co-products of the fermentation were lactate (11 g) and trehalose (12 g). Only trace amounts of other organic acids accumulated in the culture medium. This process offers an interesting alternative to currently employed fermentation strategies in which biotin limitation and/or surfactant addition is used to induce glutamate production. Simple control of fermentor cooling can be used to control the onset of the production phase, offering significant advantages from both an economic and a process robustness viewpoint.
doi_str_mv 10.1016/S0141-0229(99)00120-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_21385719</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0141022999001209</els_id><sourcerecordid>17644948</sourcerecordid><originalsourceid>FETCH-LOGICAL-c398t-54608daf64c017577fd31d6620db73a5f794ac73a965d077c83038d70fef11e13</originalsourceid><addsrcrecordid>eNqFkE1LJDEQhoO44Oj6E4Q-iLiHdqu6053OSYZh_QDBw67nkEkqY6Q_xiQ94r_fHmfQo6cUVU_lLR7GzhCuELD-_ReQYw5FIS-l_AWABeTygM2wETIHCfKQzT6RI3Yc4wtMFOcwY8t5n_luHYYN2SxRt6ag0xgoT8GvVhSm7jQ0FGPmhpCt2jHpTifadu1okh_67M2n52wxhPeeltokCn7s9qQ3Y_eT_XC6jXS6f0_Y082ff4u7_OHx9n4xf8hNKZuUV7yGxmpXcwMoKiGcLdHWdQF2KUpdOSG5NlMl68qCEKYpoWysAEcOkbA8YRe7f6fTXkeKSXU-Gmpb3dMwRlVg2VQC5bcgippzyZsJrHagCUOMgZxaB9_p8K4Q1Fa9-lCvtl6VlOpDvdoGnO8DdDS6dUH3xsevZRQNh2LCrncYTVY2noKKxlNvyPpAJik7-G-C_gPMTplj</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17644948</pqid></control><display><type>article</type><title>An improved temperature-triggered process for glutamate production with Corynebacterium glutamicum</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Delaunay, S. ; Gourdon, P. ; Lapujade, P. ; Mailly, E. ; Oriol, E. ; Engasser, J.M. ; Lindley, N.D. ; Goergen, J.-L.</creator><creatorcontrib>Delaunay, S. ; Gourdon, P. ; Lapujade, P. ; Mailly, E. ; Oriol, E. ; Engasser, J.M. ; Lindley, N.D. ; Goergen, J.-L.</creatorcontrib><description>An improved glutamate-producing fed-batch process, using a temperature-sensitive strain of Corynebacterium glutamicum, has been characterized. By a tight control of the culture temperature, it was possible to get industrially interesting performance as regards glutamate concentration, yield and productivity. A 24 h fermentation period enabled the production of 85 g/l of glutamate in the production phase induced after a temperature shift from 33°C to 39°C. The maximum specific production rate of glutamate was 0.63 g/g/h with a yield of 0.46 g of glutamate/gram of glucose. The two main co-products of the fermentation were lactate (11 g) and trehalose (12 g). Only trace amounts of other organic acids accumulated in the culture medium. This process offers an interesting alternative to currently employed fermentation strategies in which biotin limitation and/or surfactant addition is used to induce glutamate production. Simple control of fermentor cooling can be used to control the onset of the production phase, offering significant advantages from both an economic and a process robustness viewpoint.</description><identifier>ISSN: 0141-0229</identifier><identifier>EISSN: 1879-0909</identifier><identifier>DOI: 10.1016/S0141-0229(99)00120-9</identifier><identifier>CODEN: EMTED2</identifier><language>eng</language><publisher>Amsterdam: Elsevier Inc</publisher><subject>Addition reactions ; Bacteria ; Biological and medical sciences ; Biotechnology ; Cooling ; Corynebacterium glutamicum ; Fed-batch ; Fermenters ; Fundamental and applied biological sciences. Psychology ; Glucose ; Glutamate ; glutamic acid ; Methods. Procedures. Technologies ; Microbial engineering. Fermentation and microbial culture technology ; Organic acids ; Organic compounds ; Surface active agents ; Temperature</subject><ispartof>Enzyme and microbial technology, 1999-11, Vol.25 (8), p.762-768</ispartof><rights>1999 Elsevier Science Inc.</rights><rights>2000 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c398t-54608daf64c017577fd31d6620db73a5f794ac73a965d077c83038d70fef11e13</citedby><cites>FETCH-LOGICAL-c398t-54608daf64c017577fd31d6620db73a5f794ac73a965d077c83038d70fef11e13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0141-0229(99)00120-9$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27923,27924,45994</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1178402$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Delaunay, S.</creatorcontrib><creatorcontrib>Gourdon, P.</creatorcontrib><creatorcontrib>Lapujade, P.</creatorcontrib><creatorcontrib>Mailly, E.</creatorcontrib><creatorcontrib>Oriol, E.</creatorcontrib><creatorcontrib>Engasser, J.M.</creatorcontrib><creatorcontrib>Lindley, N.D.</creatorcontrib><creatorcontrib>Goergen, J.-L.</creatorcontrib><title>An improved temperature-triggered process for glutamate production with Corynebacterium glutamicum</title><title>Enzyme and microbial technology</title><description>An improved glutamate-producing fed-batch process, using a temperature-sensitive strain of Corynebacterium glutamicum, has been characterized. By a tight control of the culture temperature, it was possible to get industrially interesting performance as regards glutamate concentration, yield and productivity. A 24 h fermentation period enabled the production of 85 g/l of glutamate in the production phase induced after a temperature shift from 33°C to 39°C. The maximum specific production rate of glutamate was 0.63 g/g/h with a yield of 0.46 g of glutamate/gram of glucose. The two main co-products of the fermentation were lactate (11 g) and trehalose (12 g). Only trace amounts of other organic acids accumulated in the culture medium. This process offers an interesting alternative to currently employed fermentation strategies in which biotin limitation and/or surfactant addition is used to induce glutamate production. Simple control of fermentor cooling can be used to control the onset of the production phase, offering significant advantages from both an economic and a process robustness viewpoint.</description><subject>Addition reactions</subject><subject>Bacteria</subject><subject>Biological and medical sciences</subject><subject>Biotechnology</subject><subject>Cooling</subject><subject>Corynebacterium glutamicum</subject><subject>Fed-batch</subject><subject>Fermenters</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Glucose</subject><subject>Glutamate</subject><subject>glutamic acid</subject><subject>Methods. Procedures. Technologies</subject><subject>Microbial engineering. Fermentation and microbial culture technology</subject><subject>Organic acids</subject><subject>Organic compounds</subject><subject>Surface active agents</subject><subject>Temperature</subject><issn>0141-0229</issn><issn>1879-0909</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LJDEQhoO44Oj6E4Q-iLiHdqu6053OSYZh_QDBw67nkEkqY6Q_xiQ94r_fHmfQo6cUVU_lLR7GzhCuELD-_ReQYw5FIS-l_AWABeTygM2wETIHCfKQzT6RI3Yc4wtMFOcwY8t5n_luHYYN2SxRt6ag0xgoT8GvVhSm7jQ0FGPmhpCt2jHpTifadu1okh_67M2n52wxhPeeltokCn7s9qQ3Y_eT_XC6jXS6f0_Y082ff4u7_OHx9n4xf8hNKZuUV7yGxmpXcwMoKiGcLdHWdQF2KUpdOSG5NlMl68qCEKYpoWysAEcOkbA8YRe7f6fTXkeKSXU-Gmpb3dMwRlVg2VQC5bcgippzyZsJrHagCUOMgZxaB9_p8K4Q1Fa9-lCvtl6VlOpDvdoGnO8DdDS6dUH3xsevZRQNh2LCrncYTVY2noKKxlNvyPpAJik7-G-C_gPMTplj</recordid><startdate>19991101</startdate><enddate>19991101</enddate><creator>Delaunay, S.</creator><creator>Gourdon, P.</creator><creator>Lapujade, P.</creator><creator>Mailly, E.</creator><creator>Oriol, E.</creator><creator>Engasser, J.M.</creator><creator>Lindley, N.D.</creator><creator>Goergen, J.-L.</creator><general>Elsevier Inc</general><general>Elsevier Science</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7T7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>19991101</creationdate><title>An improved temperature-triggered process for glutamate production with Corynebacterium glutamicum</title><author>Delaunay, S. ; Gourdon, P. ; Lapujade, P. ; Mailly, E. ; Oriol, E. ; Engasser, J.M. ; Lindley, N.D. ; Goergen, J.-L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c398t-54608daf64c017577fd31d6620db73a5f794ac73a965d077c83038d70fef11e13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Addition reactions</topic><topic>Bacteria</topic><topic>Biological and medical sciences</topic><topic>Biotechnology</topic><topic>Cooling</topic><topic>Corynebacterium glutamicum</topic><topic>Fed-batch</topic><topic>Fermenters</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Glucose</topic><topic>Glutamate</topic><topic>glutamic acid</topic><topic>Methods. Procedures. Technologies</topic><topic>Microbial engineering. Fermentation and microbial culture technology</topic><topic>Organic acids</topic><topic>Organic compounds</topic><topic>Surface active agents</topic><topic>Temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Delaunay, S.</creatorcontrib><creatorcontrib>Gourdon, P.</creatorcontrib><creatorcontrib>Lapujade, P.</creatorcontrib><creatorcontrib>Mailly, E.</creatorcontrib><creatorcontrib>Oriol, E.</creatorcontrib><creatorcontrib>Engasser, J.M.</creatorcontrib><creatorcontrib>Lindley, N.D.</creatorcontrib><creatorcontrib>Goergen, J.-L.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Enzyme and microbial technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Delaunay, S.</au><au>Gourdon, P.</au><au>Lapujade, P.</au><au>Mailly, E.</au><au>Oriol, E.</au><au>Engasser, J.M.</au><au>Lindley, N.D.</au><au>Goergen, J.-L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An improved temperature-triggered process for glutamate production with Corynebacterium glutamicum</atitle><jtitle>Enzyme and microbial technology</jtitle><date>1999-11-01</date><risdate>1999</risdate><volume>25</volume><issue>8</issue><spage>762</spage><epage>768</epage><pages>762-768</pages><issn>0141-0229</issn><eissn>1879-0909</eissn><coden>EMTED2</coden><abstract>An improved glutamate-producing fed-batch process, using a temperature-sensitive strain of Corynebacterium glutamicum, has been characterized. By a tight control of the culture temperature, it was possible to get industrially interesting performance as regards glutamate concentration, yield and productivity. A 24 h fermentation period enabled the production of 85 g/l of glutamate in the production phase induced after a temperature shift from 33°C to 39°C. The maximum specific production rate of glutamate was 0.63 g/g/h with a yield of 0.46 g of glutamate/gram of glucose. The two main co-products of the fermentation were lactate (11 g) and trehalose (12 g). Only trace amounts of other organic acids accumulated in the culture medium. This process offers an interesting alternative to currently employed fermentation strategies in which biotin limitation and/or surfactant addition is used to induce glutamate production. Simple control of fermentor cooling can be used to control the onset of the production phase, offering significant advantages from both an economic and a process robustness viewpoint.</abstract><cop>Amsterdam</cop><pub>Elsevier Inc</pub><doi>10.1016/S0141-0229(99)00120-9</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0141-0229
ispartof Enzyme and microbial technology, 1999-11, Vol.25 (8), p.762-768
issn 0141-0229
1879-0909
language eng
recordid cdi_proquest_miscellaneous_21385719
source Elsevier ScienceDirect Journals Complete
subjects Addition reactions
Bacteria
Biological and medical sciences
Biotechnology
Cooling
Corynebacterium glutamicum
Fed-batch
Fermenters
Fundamental and applied biological sciences. Psychology
Glucose
Glutamate
glutamic acid
Methods. Procedures. Technologies
Microbial engineering. Fermentation and microbial culture technology
Organic acids
Organic compounds
Surface active agents
Temperature
title An improved temperature-triggered process for glutamate production with Corynebacterium glutamicum
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T15%3A57%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20improved%20temperature-triggered%20process%20for%20glutamate%20production%20with%20Corynebacterium%20glutamicum&rft.jtitle=Enzyme%20and%20microbial%20technology&rft.au=Delaunay,%20S.&rft.date=1999-11-01&rft.volume=25&rft.issue=8&rft.spage=762&rft.epage=768&rft.pages=762-768&rft.issn=0141-0229&rft.eissn=1879-0909&rft.coden=EMTED2&rft_id=info:doi/10.1016/S0141-0229(99)00120-9&rft_dat=%3Cproquest_cross%3E17644948%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=17644948&rft_id=info:pmid/&rft_els_id=S0141022999001209&rfr_iscdi=true