Base excision repair plays an important role in the protection against nitric oxide- and in vivo-induced DNA damage in Trypanosoma brucei

Uracil-DNA glycosylase (UNG) initiates the base excision repair pathway by excising uracil from DNA. We have previously shown that Trypanosoma brucei cells defective in UNG exhibit reduced infectivity thus demonstrating the relevance of this glycosylase for survival within the mammalian host. In the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Free radical biology & medicine 2019-02, Vol.131, p.59-71
Hauptverfasser: Yagüe-Capilla, Miriam, García-Caballero, Daniel, Aguilar-Pereyra, Fernando, Castillo-Acosta, Víctor M., Ruiz-Pérez, Luis M., Vidal, Antonio E., González-Pacanowska, Dolores
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 71
container_issue
container_start_page 59
container_title Free radical biology & medicine
container_volume 131
creator Yagüe-Capilla, Miriam
García-Caballero, Daniel
Aguilar-Pereyra, Fernando
Castillo-Acosta, Víctor M.
Ruiz-Pérez, Luis M.
Vidal, Antonio E.
González-Pacanowska, Dolores
description Uracil-DNA glycosylase (UNG) initiates the base excision repair pathway by excising uracil from DNA. We have previously shown that Trypanosoma brucei cells defective in UNG exhibit reduced infectivity thus demonstrating the relevance of this glycosylase for survival within the mammalian host. In the early steps of the immune response, nitric oxide (NO) is released by phagocytes, which in combination with oxygen radicals produce reactive nitrogen species (RNS). These species can react with DNA generating strand breaks and base modifications including deaminations. Since deaminated cytosines are the main substrate for UNG, we hypothesized that the glycosylase might confer protection towards nitrosative stress. Our work establishes the occurrence of genotoxic damage in Trypanosoma brucei upon exposure to NO in vitro and shows that deficient base excision repair results in increased levels of damage in DNA and a hypermutator phenotype. We also evaluate the incidence of DNA damage during infection in vivo and show that parasites recovered from mice exhibit higher levels of DNA strand breaks, base deamination and repair foci compared to cells cultured in vitro. Notably, the absence of UNG leads to reduced infectivity and enhanced DNA damage also in animal infections. By analysing mRNA and protein levels, we found that surviving UNG-KO trypanosomes highly express tryparedoxin peroxidase involved in trypanothione/tryparedoxin metabolism. These observations suggest that the immune response developed by the host enhances the activation of genes required to counteract oxidative stress and emphasize the importance of DNA repair pathways in the protection to genotoxic and oxidative stress in trypanosomes. [Display omitted] •Exposure of Trypanosoma brucei to NO in vitro gives rise to DNA damage.•Uracil glycosylase deficiency results in increased levels of damage and a hypermutator phenotype upon exposure to NO.•During infection in vivo parasites undergo stress conditions that increase the occurrence of DNA damage.•Base excision repair has an important protective role against oxidative damage both in vitro and in vivo.
doi_str_mv 10.1016/j.freeradbiomed.2018.11.025
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2138043714</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0891584918310347</els_id><sourcerecordid>2138043714</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-f64ec62a412739fbef2136344aecf346bd2a73529ed574cf656fce343bd391bb3</originalsourceid><addsrcrecordid>eNqNkc1uFDEQhC0EIpvAKyBLXLjMYI89f-IUQn6QIriEs-Wx26FXM_Zgz66yj5C3xsMmB2459aG_qlZXEfKRs5Iz3nzeli4CRG0HDBPYsmK8KzkvWVW_IhvetaKQdd-8JhvW9byoO9mfkNOUtowxWYvuLTkRTLaVaOSGPH7VCSg8GEwYPI0wa4x0HvUhUe0pTnOIi_YLjWEEip4uv4HOMSxgllWg7zX6tFCPS0RDwwNaKLLSruwe96FAb3cGLP3245xaPen7fzZ38TBrH1KYNB1iBvAdeeP0mOD90zwjv64u7y5uituf198vzm8LIzqxFK6RYJpKS161oncDuIqLRkipwTghm8FWuhV11YOtW2lcUzfOgJBisKLnwyDOyKejb_7izw7SoiZMBsZRewi7pLJdx6RouczolyNqYkgpglNzxEnHg-JMrV2orfqvC7V2oThXuYus_vB0aDesu2ftc_gZuDwCkN_dI0SVDILPYWHM8Sob8EWH_gJauqTD</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2138043714</pqid></control><display><type>article</type><title>Base excision repair plays an important role in the protection against nitric oxide- and in vivo-induced DNA damage in Trypanosoma brucei</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Yagüe-Capilla, Miriam ; García-Caballero, Daniel ; Aguilar-Pereyra, Fernando ; Castillo-Acosta, Víctor M. ; Ruiz-Pérez, Luis M. ; Vidal, Antonio E. ; González-Pacanowska, Dolores</creator><creatorcontrib>Yagüe-Capilla, Miriam ; García-Caballero, Daniel ; Aguilar-Pereyra, Fernando ; Castillo-Acosta, Víctor M. ; Ruiz-Pérez, Luis M. ; Vidal, Antonio E. ; González-Pacanowska, Dolores</creatorcontrib><description>Uracil-DNA glycosylase (UNG) initiates the base excision repair pathway by excising uracil from DNA. We have previously shown that Trypanosoma brucei cells defective in UNG exhibit reduced infectivity thus demonstrating the relevance of this glycosylase for survival within the mammalian host. In the early steps of the immune response, nitric oxide (NO) is released by phagocytes, which in combination with oxygen radicals produce reactive nitrogen species (RNS). These species can react with DNA generating strand breaks and base modifications including deaminations. Since deaminated cytosines are the main substrate for UNG, we hypothesized that the glycosylase might confer protection towards nitrosative stress. Our work establishes the occurrence of genotoxic damage in Trypanosoma brucei upon exposure to NO in vitro and shows that deficient base excision repair results in increased levels of damage in DNA and a hypermutator phenotype. We also evaluate the incidence of DNA damage during infection in vivo and show that parasites recovered from mice exhibit higher levels of DNA strand breaks, base deamination and repair foci compared to cells cultured in vitro. Notably, the absence of UNG leads to reduced infectivity and enhanced DNA damage also in animal infections. By analysing mRNA and protein levels, we found that surviving UNG-KO trypanosomes highly express tryparedoxin peroxidase involved in trypanothione/tryparedoxin metabolism. These observations suggest that the immune response developed by the host enhances the activation of genes required to counteract oxidative stress and emphasize the importance of DNA repair pathways in the protection to genotoxic and oxidative stress in trypanosomes. [Display omitted] •Exposure of Trypanosoma brucei to NO in vitro gives rise to DNA damage.•Uracil glycosylase deficiency results in increased levels of damage and a hypermutator phenotype upon exposure to NO.•During infection in vivo parasites undergo stress conditions that increase the occurrence of DNA damage.•Base excision repair has an important protective role against oxidative damage both in vitro and in vivo.</description><identifier>ISSN: 0891-5849</identifier><identifier>EISSN: 1873-4596</identifier><identifier>DOI: 10.1016/j.freeradbiomed.2018.11.025</identifier><identifier>PMID: 30472364</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Base excision repair ; DNA Damage ; DNA Repair ; DNA, Protozoan - genetics ; DNA, Protozoan - immunology ; Female ; Gene Expression ; Genotype ; Glutathione - analogs &amp; derivatives ; Glutathione - metabolism ; Host-Parasite Interactions ; Macrophages - immunology ; Macrophages - parasitology ; Mice ; Mice, Inbred C57BL ; Nitric oxide ; Nitric Oxide - metabolism ; Nitric Oxide - pharmacology ; Nitrosative Stress - genetics ; Parasitemia - immunology ; Parasitemia - metabolism ; Parasitemia - parasitology ; Peroxidases - genetics ; Peroxidases - metabolism ; Phenotype ; Protozoan Proteins - genetics ; Protozoan Proteins - metabolism ; Spermidine - analogs &amp; derivatives ; Spermidine - metabolism ; Thioredoxins - metabolism ; Trypanosoma brucei ; Trypanosoma brucei brucei - drug effects ; Trypanosoma brucei brucei - genetics ; Trypanosoma brucei brucei - metabolism ; Trypanosoma brucei brucei - pathogenicity ; Trypanosomiasis - immunology ; Trypanosomiasis - metabolism ; Trypanosomiasis - parasitology ; Uracil-DNA Glycosidase - deficiency ; Uracil-DNA Glycosidase - genetics ; Uracil-DNA glycosylase</subject><ispartof>Free radical biology &amp; medicine, 2019-02, Vol.131, p.59-71</ispartof><rights>2018 Elsevier Inc.</rights><rights>Copyright © 2018 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c383t-f64ec62a412739fbef2136344aecf346bd2a73529ed574cf656fce343bd391bb3</citedby><cites>FETCH-LOGICAL-c383t-f64ec62a412739fbef2136344aecf346bd2a73529ed574cf656fce343bd391bb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0891584918310347$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30472364$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yagüe-Capilla, Miriam</creatorcontrib><creatorcontrib>García-Caballero, Daniel</creatorcontrib><creatorcontrib>Aguilar-Pereyra, Fernando</creatorcontrib><creatorcontrib>Castillo-Acosta, Víctor M.</creatorcontrib><creatorcontrib>Ruiz-Pérez, Luis M.</creatorcontrib><creatorcontrib>Vidal, Antonio E.</creatorcontrib><creatorcontrib>González-Pacanowska, Dolores</creatorcontrib><title>Base excision repair plays an important role in the protection against nitric oxide- and in vivo-induced DNA damage in Trypanosoma brucei</title><title>Free radical biology &amp; medicine</title><addtitle>Free Radic Biol Med</addtitle><description>Uracil-DNA glycosylase (UNG) initiates the base excision repair pathway by excising uracil from DNA. We have previously shown that Trypanosoma brucei cells defective in UNG exhibit reduced infectivity thus demonstrating the relevance of this glycosylase for survival within the mammalian host. In the early steps of the immune response, nitric oxide (NO) is released by phagocytes, which in combination with oxygen radicals produce reactive nitrogen species (RNS). These species can react with DNA generating strand breaks and base modifications including deaminations. Since deaminated cytosines are the main substrate for UNG, we hypothesized that the glycosylase might confer protection towards nitrosative stress. Our work establishes the occurrence of genotoxic damage in Trypanosoma brucei upon exposure to NO in vitro and shows that deficient base excision repair results in increased levels of damage in DNA and a hypermutator phenotype. We also evaluate the incidence of DNA damage during infection in vivo and show that parasites recovered from mice exhibit higher levels of DNA strand breaks, base deamination and repair foci compared to cells cultured in vitro. Notably, the absence of UNG leads to reduced infectivity and enhanced DNA damage also in animal infections. By analysing mRNA and protein levels, we found that surviving UNG-KO trypanosomes highly express tryparedoxin peroxidase involved in trypanothione/tryparedoxin metabolism. These observations suggest that the immune response developed by the host enhances the activation of genes required to counteract oxidative stress and emphasize the importance of DNA repair pathways in the protection to genotoxic and oxidative stress in trypanosomes. [Display omitted] •Exposure of Trypanosoma brucei to NO in vitro gives rise to DNA damage.•Uracil glycosylase deficiency results in increased levels of damage and a hypermutator phenotype upon exposure to NO.•During infection in vivo parasites undergo stress conditions that increase the occurrence of DNA damage.•Base excision repair has an important protective role against oxidative damage both in vitro and in vivo.</description><subject>Animals</subject><subject>Base excision repair</subject><subject>DNA Damage</subject><subject>DNA Repair</subject><subject>DNA, Protozoan - genetics</subject><subject>DNA, Protozoan - immunology</subject><subject>Female</subject><subject>Gene Expression</subject><subject>Genotype</subject><subject>Glutathione - analogs &amp; derivatives</subject><subject>Glutathione - metabolism</subject><subject>Host-Parasite Interactions</subject><subject>Macrophages - immunology</subject><subject>Macrophages - parasitology</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Nitric oxide</subject><subject>Nitric Oxide - metabolism</subject><subject>Nitric Oxide - pharmacology</subject><subject>Nitrosative Stress - genetics</subject><subject>Parasitemia - immunology</subject><subject>Parasitemia - metabolism</subject><subject>Parasitemia - parasitology</subject><subject>Peroxidases - genetics</subject><subject>Peroxidases - metabolism</subject><subject>Phenotype</subject><subject>Protozoan Proteins - genetics</subject><subject>Protozoan Proteins - metabolism</subject><subject>Spermidine - analogs &amp; derivatives</subject><subject>Spermidine - metabolism</subject><subject>Thioredoxins - metabolism</subject><subject>Trypanosoma brucei</subject><subject>Trypanosoma brucei brucei - drug effects</subject><subject>Trypanosoma brucei brucei - genetics</subject><subject>Trypanosoma brucei brucei - metabolism</subject><subject>Trypanosoma brucei brucei - pathogenicity</subject><subject>Trypanosomiasis - immunology</subject><subject>Trypanosomiasis - metabolism</subject><subject>Trypanosomiasis - parasitology</subject><subject>Uracil-DNA Glycosidase - deficiency</subject><subject>Uracil-DNA Glycosidase - genetics</subject><subject>Uracil-DNA glycosylase</subject><issn>0891-5849</issn><issn>1873-4596</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkc1uFDEQhC0EIpvAKyBLXLjMYI89f-IUQn6QIriEs-Wx26FXM_Zgz66yj5C3xsMmB2459aG_qlZXEfKRs5Iz3nzeli4CRG0HDBPYsmK8KzkvWVW_IhvetaKQdd-8JhvW9byoO9mfkNOUtowxWYvuLTkRTLaVaOSGPH7VCSg8GEwYPI0wa4x0HvUhUe0pTnOIi_YLjWEEip4uv4HOMSxgllWg7zX6tFCPS0RDwwNaKLLSruwe96FAb3cGLP3245xaPen7fzZ38TBrH1KYNB1iBvAdeeP0mOD90zwjv64u7y5uituf198vzm8LIzqxFK6RYJpKS161oncDuIqLRkipwTghm8FWuhV11YOtW2lcUzfOgJBisKLnwyDOyKejb_7izw7SoiZMBsZRewi7pLJdx6RouczolyNqYkgpglNzxEnHg-JMrV2orfqvC7V2oThXuYus_vB0aDesu2ftc_gZuDwCkN_dI0SVDILPYWHM8Sob8EWH_gJauqTD</recordid><startdate>20190201</startdate><enddate>20190201</enddate><creator>Yagüe-Capilla, Miriam</creator><creator>García-Caballero, Daniel</creator><creator>Aguilar-Pereyra, Fernando</creator><creator>Castillo-Acosta, Víctor M.</creator><creator>Ruiz-Pérez, Luis M.</creator><creator>Vidal, Antonio E.</creator><creator>González-Pacanowska, Dolores</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20190201</creationdate><title>Base excision repair plays an important role in the protection against nitric oxide- and in vivo-induced DNA damage in Trypanosoma brucei</title><author>Yagüe-Capilla, Miriam ; García-Caballero, Daniel ; Aguilar-Pereyra, Fernando ; Castillo-Acosta, Víctor M. ; Ruiz-Pérez, Luis M. ; Vidal, Antonio E. ; González-Pacanowska, Dolores</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-f64ec62a412739fbef2136344aecf346bd2a73529ed574cf656fce343bd391bb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Animals</topic><topic>Base excision repair</topic><topic>DNA Damage</topic><topic>DNA Repair</topic><topic>DNA, Protozoan - genetics</topic><topic>DNA, Protozoan - immunology</topic><topic>Female</topic><topic>Gene Expression</topic><topic>Genotype</topic><topic>Glutathione - analogs &amp; derivatives</topic><topic>Glutathione - metabolism</topic><topic>Host-Parasite Interactions</topic><topic>Macrophages - immunology</topic><topic>Macrophages - parasitology</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Nitric oxide</topic><topic>Nitric Oxide - metabolism</topic><topic>Nitric Oxide - pharmacology</topic><topic>Nitrosative Stress - genetics</topic><topic>Parasitemia - immunology</topic><topic>Parasitemia - metabolism</topic><topic>Parasitemia - parasitology</topic><topic>Peroxidases - genetics</topic><topic>Peroxidases - metabolism</topic><topic>Phenotype</topic><topic>Protozoan Proteins - genetics</topic><topic>Protozoan Proteins - metabolism</topic><topic>Spermidine - analogs &amp; derivatives</topic><topic>Spermidine - metabolism</topic><topic>Thioredoxins - metabolism</topic><topic>Trypanosoma brucei</topic><topic>Trypanosoma brucei brucei - drug effects</topic><topic>Trypanosoma brucei brucei - genetics</topic><topic>Trypanosoma brucei brucei - metabolism</topic><topic>Trypanosoma brucei brucei - pathogenicity</topic><topic>Trypanosomiasis - immunology</topic><topic>Trypanosomiasis - metabolism</topic><topic>Trypanosomiasis - parasitology</topic><topic>Uracil-DNA Glycosidase - deficiency</topic><topic>Uracil-DNA Glycosidase - genetics</topic><topic>Uracil-DNA glycosylase</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yagüe-Capilla, Miriam</creatorcontrib><creatorcontrib>García-Caballero, Daniel</creatorcontrib><creatorcontrib>Aguilar-Pereyra, Fernando</creatorcontrib><creatorcontrib>Castillo-Acosta, Víctor M.</creatorcontrib><creatorcontrib>Ruiz-Pérez, Luis M.</creatorcontrib><creatorcontrib>Vidal, Antonio E.</creatorcontrib><creatorcontrib>González-Pacanowska, Dolores</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Free radical biology &amp; medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yagüe-Capilla, Miriam</au><au>García-Caballero, Daniel</au><au>Aguilar-Pereyra, Fernando</au><au>Castillo-Acosta, Víctor M.</au><au>Ruiz-Pérez, Luis M.</au><au>Vidal, Antonio E.</au><au>González-Pacanowska, Dolores</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Base excision repair plays an important role in the protection against nitric oxide- and in vivo-induced DNA damage in Trypanosoma brucei</atitle><jtitle>Free radical biology &amp; medicine</jtitle><addtitle>Free Radic Biol Med</addtitle><date>2019-02-01</date><risdate>2019</risdate><volume>131</volume><spage>59</spage><epage>71</epage><pages>59-71</pages><issn>0891-5849</issn><eissn>1873-4596</eissn><abstract>Uracil-DNA glycosylase (UNG) initiates the base excision repair pathway by excising uracil from DNA. We have previously shown that Trypanosoma brucei cells defective in UNG exhibit reduced infectivity thus demonstrating the relevance of this glycosylase for survival within the mammalian host. In the early steps of the immune response, nitric oxide (NO) is released by phagocytes, which in combination with oxygen radicals produce reactive nitrogen species (RNS). These species can react with DNA generating strand breaks and base modifications including deaminations. Since deaminated cytosines are the main substrate for UNG, we hypothesized that the glycosylase might confer protection towards nitrosative stress. Our work establishes the occurrence of genotoxic damage in Trypanosoma brucei upon exposure to NO in vitro and shows that deficient base excision repair results in increased levels of damage in DNA and a hypermutator phenotype. We also evaluate the incidence of DNA damage during infection in vivo and show that parasites recovered from mice exhibit higher levels of DNA strand breaks, base deamination and repair foci compared to cells cultured in vitro. Notably, the absence of UNG leads to reduced infectivity and enhanced DNA damage also in animal infections. By analysing mRNA and protein levels, we found that surviving UNG-KO trypanosomes highly express tryparedoxin peroxidase involved in trypanothione/tryparedoxin metabolism. These observations suggest that the immune response developed by the host enhances the activation of genes required to counteract oxidative stress and emphasize the importance of DNA repair pathways in the protection to genotoxic and oxidative stress in trypanosomes. [Display omitted] •Exposure of Trypanosoma brucei to NO in vitro gives rise to DNA damage.•Uracil glycosylase deficiency results in increased levels of damage and a hypermutator phenotype upon exposure to NO.•During infection in vivo parasites undergo stress conditions that increase the occurrence of DNA damage.•Base excision repair has an important protective role against oxidative damage both in vitro and in vivo.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>30472364</pmid><doi>10.1016/j.freeradbiomed.2018.11.025</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0891-5849
ispartof Free radical biology & medicine, 2019-02, Vol.131, p.59-71
issn 0891-5849
1873-4596
language eng
recordid cdi_proquest_miscellaneous_2138043714
source MEDLINE; Elsevier ScienceDirect Journals
subjects Animals
Base excision repair
DNA Damage
DNA Repair
DNA, Protozoan - genetics
DNA, Protozoan - immunology
Female
Gene Expression
Genotype
Glutathione - analogs & derivatives
Glutathione - metabolism
Host-Parasite Interactions
Macrophages - immunology
Macrophages - parasitology
Mice
Mice, Inbred C57BL
Nitric oxide
Nitric Oxide - metabolism
Nitric Oxide - pharmacology
Nitrosative Stress - genetics
Parasitemia - immunology
Parasitemia - metabolism
Parasitemia - parasitology
Peroxidases - genetics
Peroxidases - metabolism
Phenotype
Protozoan Proteins - genetics
Protozoan Proteins - metabolism
Spermidine - analogs & derivatives
Spermidine - metabolism
Thioredoxins - metabolism
Trypanosoma brucei
Trypanosoma brucei brucei - drug effects
Trypanosoma brucei brucei - genetics
Trypanosoma brucei brucei - metabolism
Trypanosoma brucei brucei - pathogenicity
Trypanosomiasis - immunology
Trypanosomiasis - metabolism
Trypanosomiasis - parasitology
Uracil-DNA Glycosidase - deficiency
Uracil-DNA Glycosidase - genetics
Uracil-DNA glycosylase
title Base excision repair plays an important role in the protection against nitric oxide- and in vivo-induced DNA damage in Trypanosoma brucei
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T06%3A23%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Base%20excision%20repair%20plays%20an%20important%20role%20in%20the%20protection%20against%20nitric%20oxide-%20and%20in%20vivo-induced%20DNA%20damage%20in%20Trypanosoma%20brucei&rft.jtitle=Free%20radical%20biology%20&%20medicine&rft.au=Yag%C3%BCe-Capilla,%20Miriam&rft.date=2019-02-01&rft.volume=131&rft.spage=59&rft.epage=71&rft.pages=59-71&rft.issn=0891-5849&rft.eissn=1873-4596&rft_id=info:doi/10.1016/j.freeradbiomed.2018.11.025&rft_dat=%3Cproquest_cross%3E2138043714%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2138043714&rft_id=info:pmid/30472364&rft_els_id=S0891584918310347&rfr_iscdi=true