Quantum Error Correction Decoheres Noise
Typical studies of quantum error correction assume probabilistic Pauli noise, largely because it is relatively easy to analyze and simulate. Consequently, the effective logical noise due to physically realistic coherent errors is relatively unknown. Here, we prove that encoding a system in a stabili...
Gespeichert in:
Veröffentlicht in: | Physical review letters 2018-11, Vol.121 (19), p.190501-190501, Article 190501 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 190501 |
---|---|
container_issue | 19 |
container_start_page | 190501 |
container_title | Physical review letters |
container_volume | 121 |
creator | Beale, Stefanie J Wallman, Joel J Gutiérrez, Mauricio Brown, Kenneth R Laflamme, Raymond |
description | Typical studies of quantum error correction assume probabilistic Pauli noise, largely because it is relatively easy to analyze and simulate. Consequently, the effective logical noise due to physically realistic coherent errors is relatively unknown. Here, we prove that encoding a system in a stabilizer code and measuring error syndromes decoheres errors, that is, causes coherent errors to converge toward probabilistic Pauli errors, even when no recovery operations are applied. Two practical consequences are that the error rate in a logical circuit is well quantified by the average gate fidelity at the logical level and that essentially optimal recovery operators can be determined by independently optimizing the logical fidelity of the effective noise per syndrome. |
doi_str_mv | 10.1103/PhysRevLett.121.190501 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2137475960</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2137475960</sourcerecordid><originalsourceid>FETCH-LOGICAL-c387t-c4676c1d3a5dab7f5a9023f1b9a0302d4f88a84b6045402c76863562c16a450b3</originalsourceid><addsrcrecordid>eNpdkEtLw0AUhQdRbK3-hRJw003qvfNMllLrA4ovdD1MJhOa0nTqTCL03xtpFXF1Nt85HD5CxghTRGBXz8tdfHWfC9e2U6Q4xRwE4BEZIqg8VYj8mAwBGKY5gBqQsxhXAIBUZqdkwIDLTFIYkslLZzZt1yTzEHxIZj4EZ9vab5IbZ_3SBReTR19Hd05OKrOO7uKQI_J-O3-b3aeLp7uH2fUitSxTbWq5VNJiyYwoTaEqYXKgrMIiN8CAlrzKMpPxQgIXHKhV_Q8mJLUoDRdQsBGZ7He3wX90Lra6qaN167XZON9FTZEprkQuoUcv_6Er34VN_66nBAjMQKieknvKBh9jcJXehroxYacR9LdL_cel7l3qvcu-OD7Md0Xjyt_ajzz2BUMPb6k</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2150518057</pqid></control><display><type>article</type><title>Quantum Error Correction Decoheres Noise</title><source>American Physical Society Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Beale, Stefanie J ; Wallman, Joel J ; Gutiérrez, Mauricio ; Brown, Kenneth R ; Laflamme, Raymond</creator><creatorcontrib>Beale, Stefanie J ; Wallman, Joel J ; Gutiérrez, Mauricio ; Brown, Kenneth R ; Laflamme, Raymond</creatorcontrib><description>Typical studies of quantum error correction assume probabilistic Pauli noise, largely because it is relatively easy to analyze and simulate. Consequently, the effective logical noise due to physically realistic coherent errors is relatively unknown. Here, we prove that encoding a system in a stabilizer code and measuring error syndromes decoheres errors, that is, causes coherent errors to converge toward probabilistic Pauli errors, even when no recovery operations are applied. Two practical consequences are that the error rate in a logical circuit is well quantified by the average gate fidelity at the logical level and that essentially optimal recovery operators can be determined by independently optimizing the logical fidelity of the effective noise per syndrome.</description><identifier>ISSN: 0031-9007</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/PhysRevLett.121.190501</identifier><identifier>PMID: 30468620</identifier><language>eng</language><publisher>United States: American Physical Society</publisher><subject>Error analysis ; Error correction ; Error correction & detection ; Logic circuits ; Noise ; Optimization ; Quantum theory ; Recovery</subject><ispartof>Physical review letters, 2018-11, Vol.121 (19), p.190501-190501, Article 190501</ispartof><rights>Copyright American Physical Society Nov 9, 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c387t-c4676c1d3a5dab7f5a9023f1b9a0302d4f88a84b6045402c76863562c16a450b3</citedby><cites>FETCH-LOGICAL-c387t-c4676c1d3a5dab7f5a9023f1b9a0302d4f88a84b6045402c76863562c16a450b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,2862,2863,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30468620$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Beale, Stefanie J</creatorcontrib><creatorcontrib>Wallman, Joel J</creatorcontrib><creatorcontrib>Gutiérrez, Mauricio</creatorcontrib><creatorcontrib>Brown, Kenneth R</creatorcontrib><creatorcontrib>Laflamme, Raymond</creatorcontrib><title>Quantum Error Correction Decoheres Noise</title><title>Physical review letters</title><addtitle>Phys Rev Lett</addtitle><description>Typical studies of quantum error correction assume probabilistic Pauli noise, largely because it is relatively easy to analyze and simulate. Consequently, the effective logical noise due to physically realistic coherent errors is relatively unknown. Here, we prove that encoding a system in a stabilizer code and measuring error syndromes decoheres errors, that is, causes coherent errors to converge toward probabilistic Pauli errors, even when no recovery operations are applied. Two practical consequences are that the error rate in a logical circuit is well quantified by the average gate fidelity at the logical level and that essentially optimal recovery operators can be determined by independently optimizing the logical fidelity of the effective noise per syndrome.</description><subject>Error analysis</subject><subject>Error correction</subject><subject>Error correction & detection</subject><subject>Logic circuits</subject><subject>Noise</subject><subject>Optimization</subject><subject>Quantum theory</subject><subject>Recovery</subject><issn>0031-9007</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpdkEtLw0AUhQdRbK3-hRJw003qvfNMllLrA4ovdD1MJhOa0nTqTCL03xtpFXF1Nt85HD5CxghTRGBXz8tdfHWfC9e2U6Q4xRwE4BEZIqg8VYj8mAwBGKY5gBqQsxhXAIBUZqdkwIDLTFIYkslLZzZt1yTzEHxIZj4EZ9vab5IbZ_3SBReTR19Hd05OKrOO7uKQI_J-O3-b3aeLp7uH2fUitSxTbWq5VNJiyYwoTaEqYXKgrMIiN8CAlrzKMpPxQgIXHKhV_Q8mJLUoDRdQsBGZ7He3wX90Lra6qaN167XZON9FTZEprkQuoUcv_6Er34VN_66nBAjMQKieknvKBh9jcJXehroxYacR9LdL_cel7l3qvcu-OD7Md0Xjyt_ajzz2BUMPb6k</recordid><startdate>20181109</startdate><enddate>20181109</enddate><creator>Beale, Stefanie J</creator><creator>Wallman, Joel J</creator><creator>Gutiérrez, Mauricio</creator><creator>Brown, Kenneth R</creator><creator>Laflamme, Raymond</creator><general>American Physical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20181109</creationdate><title>Quantum Error Correction Decoheres Noise</title><author>Beale, Stefanie J ; Wallman, Joel J ; Gutiérrez, Mauricio ; Brown, Kenneth R ; Laflamme, Raymond</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c387t-c4676c1d3a5dab7f5a9023f1b9a0302d4f88a84b6045402c76863562c16a450b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Error analysis</topic><topic>Error correction</topic><topic>Error correction & detection</topic><topic>Logic circuits</topic><topic>Noise</topic><topic>Optimization</topic><topic>Quantum theory</topic><topic>Recovery</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Beale, Stefanie J</creatorcontrib><creatorcontrib>Wallman, Joel J</creatorcontrib><creatorcontrib>Gutiérrez, Mauricio</creatorcontrib><creatorcontrib>Brown, Kenneth R</creatorcontrib><creatorcontrib>Laflamme, Raymond</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Beale, Stefanie J</au><au>Wallman, Joel J</au><au>Gutiérrez, Mauricio</au><au>Brown, Kenneth R</au><au>Laflamme, Raymond</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantum Error Correction Decoheres Noise</atitle><jtitle>Physical review letters</jtitle><addtitle>Phys Rev Lett</addtitle><date>2018-11-09</date><risdate>2018</risdate><volume>121</volume><issue>19</issue><spage>190501</spage><epage>190501</epage><pages>190501-190501</pages><artnum>190501</artnum><issn>0031-9007</issn><eissn>1079-7114</eissn><abstract>Typical studies of quantum error correction assume probabilistic Pauli noise, largely because it is relatively easy to analyze and simulate. Consequently, the effective logical noise due to physically realistic coherent errors is relatively unknown. Here, we prove that encoding a system in a stabilizer code and measuring error syndromes decoheres errors, that is, causes coherent errors to converge toward probabilistic Pauli errors, even when no recovery operations are applied. Two practical consequences are that the error rate in a logical circuit is well quantified by the average gate fidelity at the logical level and that essentially optimal recovery operators can be determined by independently optimizing the logical fidelity of the effective noise per syndrome.</abstract><cop>United States</cop><pub>American Physical Society</pub><pmid>30468620</pmid><doi>10.1103/PhysRevLett.121.190501</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0031-9007 |
ispartof | Physical review letters, 2018-11, Vol.121 (19), p.190501-190501, Article 190501 |
issn | 0031-9007 1079-7114 |
language | eng |
recordid | cdi_proquest_miscellaneous_2137475960 |
source | American Physical Society Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Error analysis Error correction Error correction & detection Logic circuits Noise Optimization Quantum theory Recovery |
title | Quantum Error Correction Decoheres Noise |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T03%3A56%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantum%20Error%20Correction%20Decoheres%20Noise&rft.jtitle=Physical%20review%20letters&rft.au=Beale,%20Stefanie%20J&rft.date=2018-11-09&rft.volume=121&rft.issue=19&rft.spage=190501&rft.epage=190501&rft.pages=190501-190501&rft.artnum=190501&rft.issn=0031-9007&rft.eissn=1079-7114&rft_id=info:doi/10.1103/PhysRevLett.121.190501&rft_dat=%3Cproquest_cross%3E2137475960%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2150518057&rft_id=info:pmid/30468620&rfr_iscdi=true |