Quantum Error Correction Decoheres Noise

Typical studies of quantum error correction assume probabilistic Pauli noise, largely because it is relatively easy to analyze and simulate. Consequently, the effective logical noise due to physically realistic coherent errors is relatively unknown. Here, we prove that encoding a system in a stabili...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review letters 2018-11, Vol.121 (19), p.190501-190501, Article 190501
Hauptverfasser: Beale, Stefanie J, Wallman, Joel J, Gutiérrez, Mauricio, Brown, Kenneth R, Laflamme, Raymond
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 190501
container_issue 19
container_start_page 190501
container_title Physical review letters
container_volume 121
creator Beale, Stefanie J
Wallman, Joel J
Gutiérrez, Mauricio
Brown, Kenneth R
Laflamme, Raymond
description Typical studies of quantum error correction assume probabilistic Pauli noise, largely because it is relatively easy to analyze and simulate. Consequently, the effective logical noise due to physically realistic coherent errors is relatively unknown. Here, we prove that encoding a system in a stabilizer code and measuring error syndromes decoheres errors, that is, causes coherent errors to converge toward probabilistic Pauli errors, even when no recovery operations are applied. Two practical consequences are that the error rate in a logical circuit is well quantified by the average gate fidelity at the logical level and that essentially optimal recovery operators can be determined by independently optimizing the logical fidelity of the effective noise per syndrome.
doi_str_mv 10.1103/PhysRevLett.121.190501
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2137475960</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2137475960</sourcerecordid><originalsourceid>FETCH-LOGICAL-c387t-c4676c1d3a5dab7f5a9023f1b9a0302d4f88a84b6045402c76863562c16a450b3</originalsourceid><addsrcrecordid>eNpdkEtLw0AUhQdRbK3-hRJw003qvfNMllLrA4ovdD1MJhOa0nTqTCL03xtpFXF1Nt85HD5CxghTRGBXz8tdfHWfC9e2U6Q4xRwE4BEZIqg8VYj8mAwBGKY5gBqQsxhXAIBUZqdkwIDLTFIYkslLZzZt1yTzEHxIZj4EZ9vab5IbZ_3SBReTR19Hd05OKrOO7uKQI_J-O3-b3aeLp7uH2fUitSxTbWq5VNJiyYwoTaEqYXKgrMIiN8CAlrzKMpPxQgIXHKhV_Q8mJLUoDRdQsBGZ7He3wX90Lra6qaN167XZON9FTZEprkQuoUcv_6Er34VN_66nBAjMQKieknvKBh9jcJXehroxYacR9LdL_cel7l3qvcu-OD7Md0Xjyt_ajzz2BUMPb6k</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2150518057</pqid></control><display><type>article</type><title>Quantum Error Correction Decoheres Noise</title><source>American Physical Society Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Beale, Stefanie J ; Wallman, Joel J ; Gutiérrez, Mauricio ; Brown, Kenneth R ; Laflamme, Raymond</creator><creatorcontrib>Beale, Stefanie J ; Wallman, Joel J ; Gutiérrez, Mauricio ; Brown, Kenneth R ; Laflamme, Raymond</creatorcontrib><description>Typical studies of quantum error correction assume probabilistic Pauli noise, largely because it is relatively easy to analyze and simulate. Consequently, the effective logical noise due to physically realistic coherent errors is relatively unknown. Here, we prove that encoding a system in a stabilizer code and measuring error syndromes decoheres errors, that is, causes coherent errors to converge toward probabilistic Pauli errors, even when no recovery operations are applied. Two practical consequences are that the error rate in a logical circuit is well quantified by the average gate fidelity at the logical level and that essentially optimal recovery operators can be determined by independently optimizing the logical fidelity of the effective noise per syndrome.</description><identifier>ISSN: 0031-9007</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/PhysRevLett.121.190501</identifier><identifier>PMID: 30468620</identifier><language>eng</language><publisher>United States: American Physical Society</publisher><subject>Error analysis ; Error correction ; Error correction &amp; detection ; Logic circuits ; Noise ; Optimization ; Quantum theory ; Recovery</subject><ispartof>Physical review letters, 2018-11, Vol.121 (19), p.190501-190501, Article 190501</ispartof><rights>Copyright American Physical Society Nov 9, 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c387t-c4676c1d3a5dab7f5a9023f1b9a0302d4f88a84b6045402c76863562c16a450b3</citedby><cites>FETCH-LOGICAL-c387t-c4676c1d3a5dab7f5a9023f1b9a0302d4f88a84b6045402c76863562c16a450b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,2862,2863,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30468620$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Beale, Stefanie J</creatorcontrib><creatorcontrib>Wallman, Joel J</creatorcontrib><creatorcontrib>Gutiérrez, Mauricio</creatorcontrib><creatorcontrib>Brown, Kenneth R</creatorcontrib><creatorcontrib>Laflamme, Raymond</creatorcontrib><title>Quantum Error Correction Decoheres Noise</title><title>Physical review letters</title><addtitle>Phys Rev Lett</addtitle><description>Typical studies of quantum error correction assume probabilistic Pauli noise, largely because it is relatively easy to analyze and simulate. Consequently, the effective logical noise due to physically realistic coherent errors is relatively unknown. Here, we prove that encoding a system in a stabilizer code and measuring error syndromes decoheres errors, that is, causes coherent errors to converge toward probabilistic Pauli errors, even when no recovery operations are applied. Two practical consequences are that the error rate in a logical circuit is well quantified by the average gate fidelity at the logical level and that essentially optimal recovery operators can be determined by independently optimizing the logical fidelity of the effective noise per syndrome.</description><subject>Error analysis</subject><subject>Error correction</subject><subject>Error correction &amp; detection</subject><subject>Logic circuits</subject><subject>Noise</subject><subject>Optimization</subject><subject>Quantum theory</subject><subject>Recovery</subject><issn>0031-9007</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpdkEtLw0AUhQdRbK3-hRJw003qvfNMllLrA4ovdD1MJhOa0nTqTCL03xtpFXF1Nt85HD5CxghTRGBXz8tdfHWfC9e2U6Q4xRwE4BEZIqg8VYj8mAwBGKY5gBqQsxhXAIBUZqdkwIDLTFIYkslLZzZt1yTzEHxIZj4EZ9vab5IbZ_3SBReTR19Hd05OKrOO7uKQI_J-O3-b3aeLp7uH2fUitSxTbWq5VNJiyYwoTaEqYXKgrMIiN8CAlrzKMpPxQgIXHKhV_Q8mJLUoDRdQsBGZ7He3wX90Lra6qaN167XZON9FTZEprkQuoUcv_6Er34VN_66nBAjMQKieknvKBh9jcJXehroxYacR9LdL_cel7l3qvcu-OD7Md0Xjyt_ajzz2BUMPb6k</recordid><startdate>20181109</startdate><enddate>20181109</enddate><creator>Beale, Stefanie J</creator><creator>Wallman, Joel J</creator><creator>Gutiérrez, Mauricio</creator><creator>Brown, Kenneth R</creator><creator>Laflamme, Raymond</creator><general>American Physical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20181109</creationdate><title>Quantum Error Correction Decoheres Noise</title><author>Beale, Stefanie J ; Wallman, Joel J ; Gutiérrez, Mauricio ; Brown, Kenneth R ; Laflamme, Raymond</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c387t-c4676c1d3a5dab7f5a9023f1b9a0302d4f88a84b6045402c76863562c16a450b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Error analysis</topic><topic>Error correction</topic><topic>Error correction &amp; detection</topic><topic>Logic circuits</topic><topic>Noise</topic><topic>Optimization</topic><topic>Quantum theory</topic><topic>Recovery</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Beale, Stefanie J</creatorcontrib><creatorcontrib>Wallman, Joel J</creatorcontrib><creatorcontrib>Gutiérrez, Mauricio</creatorcontrib><creatorcontrib>Brown, Kenneth R</creatorcontrib><creatorcontrib>Laflamme, Raymond</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Beale, Stefanie J</au><au>Wallman, Joel J</au><au>Gutiérrez, Mauricio</au><au>Brown, Kenneth R</au><au>Laflamme, Raymond</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantum Error Correction Decoheres Noise</atitle><jtitle>Physical review letters</jtitle><addtitle>Phys Rev Lett</addtitle><date>2018-11-09</date><risdate>2018</risdate><volume>121</volume><issue>19</issue><spage>190501</spage><epage>190501</epage><pages>190501-190501</pages><artnum>190501</artnum><issn>0031-9007</issn><eissn>1079-7114</eissn><abstract>Typical studies of quantum error correction assume probabilistic Pauli noise, largely because it is relatively easy to analyze and simulate. Consequently, the effective logical noise due to physically realistic coherent errors is relatively unknown. Here, we prove that encoding a system in a stabilizer code and measuring error syndromes decoheres errors, that is, causes coherent errors to converge toward probabilistic Pauli errors, even when no recovery operations are applied. Two practical consequences are that the error rate in a logical circuit is well quantified by the average gate fidelity at the logical level and that essentially optimal recovery operators can be determined by independently optimizing the logical fidelity of the effective noise per syndrome.</abstract><cop>United States</cop><pub>American Physical Society</pub><pmid>30468620</pmid><doi>10.1103/PhysRevLett.121.190501</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0031-9007
ispartof Physical review letters, 2018-11, Vol.121 (19), p.190501-190501, Article 190501
issn 0031-9007
1079-7114
language eng
recordid cdi_proquest_miscellaneous_2137475960
source American Physical Society Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Error analysis
Error correction
Error correction & detection
Logic circuits
Noise
Optimization
Quantum theory
Recovery
title Quantum Error Correction Decoheres Noise
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T03%3A56%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantum%20Error%20Correction%20Decoheres%20Noise&rft.jtitle=Physical%20review%20letters&rft.au=Beale,%20Stefanie%20J&rft.date=2018-11-09&rft.volume=121&rft.issue=19&rft.spage=190501&rft.epage=190501&rft.pages=190501-190501&rft.artnum=190501&rft.issn=0031-9007&rft.eissn=1079-7114&rft_id=info:doi/10.1103/PhysRevLett.121.190501&rft_dat=%3Cproquest_cross%3E2137475960%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2150518057&rft_id=info:pmid/30468620&rfr_iscdi=true