GIS‐Based Integration of Social Vulnerability and Level 3 Probabilistic Risk Assessment to Advance Emergency Preparedness, Planning, and Response for Severe Nuclear Power Plant Accidents
In the nuclear power industry, Level 3 probabilistic risk assessment (PRA) is used to estimate damage to public health and the environment if a severe accident leads to large radiological release. Current Level 3 PRA does not have an explicit inclusion of social factors and, therefore, it is not pos...
Gespeichert in:
Veröffentlicht in: | Risk analysis 2019-06, Vol.39 (6), p.1262-1280 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1280 |
---|---|
container_issue | 6 |
container_start_page | 1262 |
container_title | Risk analysis |
container_volume | 39 |
creator | Pence, Justin Miller, Ian Sakurahara, Tatsuya Whitacre, James Reihani, Seyed Kee, Ernie Mohaghegh, Zahra |
description | In the nuclear power industry, Level 3 probabilistic risk assessment (PRA) is used to estimate damage to public health and the environment if a severe accident leads to large radiological release. Current Level 3 PRA does not have an explicit inclusion of social factors and, therefore, it is not possible to perform importance ranking of social factors for risk‐informing emergency preparedness, planning, and response (EPPR). This article offers a methodology for adapting the concept of social vulnerability, commonly used in natural hazard research, in the context of a severe nuclear power plant accident. The methodology has four steps: (1) calculating a hazard‐independent social vulnerability index for the local population; (2) developing a location‐specific representation of the maximum radiological hazard estimated from current Level 3 PRA, in a geographic information system (GIS) environment; (3) developing a GIS‐based socio‐technical risk map by combining the social vulnerability index and the location‐specific radiological hazard; and (4) conducting a risk importance measure analysis to rank the criticality of social factors based on their contribution to the socio‐technical risk. The methodology is applied using results from the 2012 Surry Power Station state‐of‐the‐art reactor consequence analysis. A radiological hazard model is generated from MELCOR accident consequence code system, translated into a GIS environment, and combined with the Center for Disease Control social vulnerability index (SVI). This research creates an opportunity to explicitly consider and rank the criticality of location‐specific SVI themes based on their influence on risk, providing input for EPPR. |
doi_str_mv | 10.1111/risa.13241 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2137475790</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2137475790</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4591-a2ef18ef491cb9eebe38778f84ae5ac5e3e27fab5e40e7986709f3ce1f2801b93</originalsourceid><addsrcrecordid>eNp90U9uEzEUBnALgWgobDgAssQGoU7xn3E8Xg5VKZEiiBJgO_J4niOXGTvYM62y4wgciNNwEtyksGCBN5asn7_3pA-h55Sc03zeRJf0OeWspA_QjAquirli5UM0I0yyouScnaAnKV0TQgkR8jE64aScV3MlZujn1WLz6_uPtzpBhxd-hG3UowseB4s3wTjd4y9T7yHq1vVu3GPtO7yEG-gxx6sY2sN7Gp3Ba5e-4jolSGkAP-Ix4Lq70d4AvhwgbsGbff4COx2h81md4VWvvXd-e3aIXUPaBZ8A2xDxJs-IgD9Mpgcd8SrcQjz4EdfGuC5PSE_RI6v7BM_u71P0-d3lp4v3xfLj1eKiXhamFIoWmoGlFdhSUdMqgBZ4JWVlq1KD0EYAByatbgWUBKSq5pIoyw1QyypCW8VP0atj7i6GbxOksRlcMtDnbSBMqWGUy1IKqUimL_-h12GKPm_XMMYVk6JUIqvXR2ViSCmCbXbRDTruG0qau06bu06bQ6cZv7iPnNoBur_0T4kZ0CO4dT3s_xPVrBeb-hj6G6UNr9M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2239275495</pqid></control><display><type>article</type><title>GIS‐Based Integration of Social Vulnerability and Level 3 Probabilistic Risk Assessment to Advance Emergency Preparedness, Planning, and Response for Severe Nuclear Power Plant Accidents</title><source>Wiley Online Library Journals Frontfile Complete</source><source>Business Source Complete</source><creator>Pence, Justin ; Miller, Ian ; Sakurahara, Tatsuya ; Whitacre, James ; Reihani, Seyed ; Kee, Ernie ; Mohaghegh, Zahra</creator><creatorcontrib>Pence, Justin ; Miller, Ian ; Sakurahara, Tatsuya ; Whitacre, James ; Reihani, Seyed ; Kee, Ernie ; Mohaghegh, Zahra</creatorcontrib><description>In the nuclear power industry, Level 3 probabilistic risk assessment (PRA) is used to estimate damage to public health and the environment if a severe accident leads to large radiological release. Current Level 3 PRA does not have an explicit inclusion of social factors and, therefore, it is not possible to perform importance ranking of social factors for risk‐informing emergency preparedness, planning, and response (EPPR). This article offers a methodology for adapting the concept of social vulnerability, commonly used in natural hazard research, in the context of a severe nuclear power plant accident. The methodology has four steps: (1) calculating a hazard‐independent social vulnerability index for the local population; (2) developing a location‐specific representation of the maximum radiological hazard estimated from current Level 3 PRA, in a geographic information system (GIS) environment; (3) developing a GIS‐based socio‐technical risk map by combining the social vulnerability index and the location‐specific radiological hazard; and (4) conducting a risk importance measure analysis to rank the criticality of social factors based on their contribution to the socio‐technical risk. The methodology is applied using results from the 2012 Surry Power Station state‐of‐the‐art reactor consequence analysis. A radiological hazard model is generated from MELCOR accident consequence code system, translated into a GIS environment, and combined with the Center for Disease Control social vulnerability index (SVI). This research creates an opportunity to explicitly consider and rank the criticality of location‐specific SVI themes based on their influence on risk, providing input for EPPR.</description><identifier>ISSN: 0272-4332</identifier><identifier>EISSN: 1539-6924</identifier><identifier>DOI: 10.1111/risa.13241</identifier><identifier>PMID: 30468695</identifier><language>eng</language><publisher>United States: Blackwell Publishing Ltd</publisher><subject>Accidents ; Damage assessment ; Disease control ; Electric industries ; Emergency management ; Emergency preparedness ; Emergency response ; Geographic information systems ; Health hazards ; Level 3 probabilistic risk assessment ; Local population ; Methodology ; Nuclear accidents & safety ; Nuclear energy ; Nuclear power plants ; Power ; Probabilistic risk assessment ; Probability ; Public health ; Ratings & rankings ; Remote sensing ; Research methodology ; Risk analysis ; Risk assessment ; Satellite navigation systems ; Severity ; Social factors ; social vulnerability ; Vulnerability</subject><ispartof>Risk analysis, 2019-06, Vol.39 (6), p.1262-1280</ispartof><rights>2018 Society for Risk Analysis</rights><rights>2018 Society for Risk Analysis.</rights><rights>2019 Society for Risk Analysis</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4591-a2ef18ef491cb9eebe38778f84ae5ac5e3e27fab5e40e7986709f3ce1f2801b93</citedby><cites>FETCH-LOGICAL-c4591-a2ef18ef491cb9eebe38778f84ae5ac5e3e27fab5e40e7986709f3ce1f2801b93</cites><orcidid>0000-0002-9065-2349</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Frisa.13241$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Frisa.13241$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30468695$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pence, Justin</creatorcontrib><creatorcontrib>Miller, Ian</creatorcontrib><creatorcontrib>Sakurahara, Tatsuya</creatorcontrib><creatorcontrib>Whitacre, James</creatorcontrib><creatorcontrib>Reihani, Seyed</creatorcontrib><creatorcontrib>Kee, Ernie</creatorcontrib><creatorcontrib>Mohaghegh, Zahra</creatorcontrib><title>GIS‐Based Integration of Social Vulnerability and Level 3 Probabilistic Risk Assessment to Advance Emergency Preparedness, Planning, and Response for Severe Nuclear Power Plant Accidents</title><title>Risk analysis</title><addtitle>Risk Anal</addtitle><description>In the nuclear power industry, Level 3 probabilistic risk assessment (PRA) is used to estimate damage to public health and the environment if a severe accident leads to large radiological release. Current Level 3 PRA does not have an explicit inclusion of social factors and, therefore, it is not possible to perform importance ranking of social factors for risk‐informing emergency preparedness, planning, and response (EPPR). This article offers a methodology for adapting the concept of social vulnerability, commonly used in natural hazard research, in the context of a severe nuclear power plant accident. The methodology has four steps: (1) calculating a hazard‐independent social vulnerability index for the local population; (2) developing a location‐specific representation of the maximum radiological hazard estimated from current Level 3 PRA, in a geographic information system (GIS) environment; (3) developing a GIS‐based socio‐technical risk map by combining the social vulnerability index and the location‐specific radiological hazard; and (4) conducting a risk importance measure analysis to rank the criticality of social factors based on their contribution to the socio‐technical risk. The methodology is applied using results from the 2012 Surry Power Station state‐of‐the‐art reactor consequence analysis. A radiological hazard model is generated from MELCOR accident consequence code system, translated into a GIS environment, and combined with the Center for Disease Control social vulnerability index (SVI). This research creates an opportunity to explicitly consider and rank the criticality of location‐specific SVI themes based on their influence on risk, providing input for EPPR.</description><subject>Accidents</subject><subject>Damage assessment</subject><subject>Disease control</subject><subject>Electric industries</subject><subject>Emergency management</subject><subject>Emergency preparedness</subject><subject>Emergency response</subject><subject>Geographic information systems</subject><subject>Health hazards</subject><subject>Level 3 probabilistic risk assessment</subject><subject>Local population</subject><subject>Methodology</subject><subject>Nuclear accidents & safety</subject><subject>Nuclear energy</subject><subject>Nuclear power plants</subject><subject>Power</subject><subject>Probabilistic risk assessment</subject><subject>Probability</subject><subject>Public health</subject><subject>Ratings & rankings</subject><subject>Remote sensing</subject><subject>Research methodology</subject><subject>Risk analysis</subject><subject>Risk assessment</subject><subject>Satellite navigation systems</subject><subject>Severity</subject><subject>Social factors</subject><subject>social vulnerability</subject><subject>Vulnerability</subject><issn>0272-4332</issn><issn>1539-6924</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp90U9uEzEUBnALgWgobDgAssQGoU7xn3E8Xg5VKZEiiBJgO_J4niOXGTvYM62y4wgciNNwEtyksGCBN5asn7_3pA-h55Sc03zeRJf0OeWspA_QjAquirli5UM0I0yyouScnaAnKV0TQgkR8jE64aScV3MlZujn1WLz6_uPtzpBhxd-hG3UowseB4s3wTjd4y9T7yHq1vVu3GPtO7yEG-gxx6sY2sN7Gp3Ba5e-4jolSGkAP-Ix4Lq70d4AvhwgbsGbff4COx2h81md4VWvvXd-e3aIXUPaBZ8A2xDxJs-IgD9Mpgcd8SrcQjz4EdfGuC5PSE_RI6v7BM_u71P0-d3lp4v3xfLj1eKiXhamFIoWmoGlFdhSUdMqgBZ4JWVlq1KD0EYAByatbgWUBKSq5pIoyw1QyypCW8VP0atj7i6GbxOksRlcMtDnbSBMqWGUy1IKqUimL_-h12GKPm_XMMYVk6JUIqvXR2ViSCmCbXbRDTruG0qau06bu06bQ6cZv7iPnNoBur_0T4kZ0CO4dT3s_xPVrBeb-hj6G6UNr9M</recordid><startdate>201906</startdate><enddate>201906</enddate><creator>Pence, Justin</creator><creator>Miller, Ian</creator><creator>Sakurahara, Tatsuya</creator><creator>Whitacre, James</creator><creator>Reihani, Seyed</creator><creator>Kee, Ernie</creator><creator>Mohaghegh, Zahra</creator><general>Blackwell Publishing Ltd</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7U7</scope><scope>7U9</scope><scope>8BJ</scope><scope>8FD</scope><scope>C1K</scope><scope>FQK</scope><scope>FR3</scope><scope>H94</scope><scope>JBE</scope><scope>JQ2</scope><scope>KR7</scope><scope>M7N</scope><scope>SOI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9065-2349</orcidid></search><sort><creationdate>201906</creationdate><title>GIS‐Based Integration of Social Vulnerability and Level 3 Probabilistic Risk Assessment to Advance Emergency Preparedness, Planning, and Response for Severe Nuclear Power Plant Accidents</title><author>Pence, Justin ; Miller, Ian ; Sakurahara, Tatsuya ; Whitacre, James ; Reihani, Seyed ; Kee, Ernie ; Mohaghegh, Zahra</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4591-a2ef18ef491cb9eebe38778f84ae5ac5e3e27fab5e40e7986709f3ce1f2801b93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Accidents</topic><topic>Damage assessment</topic><topic>Disease control</topic><topic>Electric industries</topic><topic>Emergency management</topic><topic>Emergency preparedness</topic><topic>Emergency response</topic><topic>Geographic information systems</topic><topic>Health hazards</topic><topic>Level 3 probabilistic risk assessment</topic><topic>Local population</topic><topic>Methodology</topic><topic>Nuclear accidents & safety</topic><topic>Nuclear energy</topic><topic>Nuclear power plants</topic><topic>Power</topic><topic>Probabilistic risk assessment</topic><topic>Probability</topic><topic>Public health</topic><topic>Ratings & rankings</topic><topic>Remote sensing</topic><topic>Research methodology</topic><topic>Risk analysis</topic><topic>Risk assessment</topic><topic>Satellite navigation systems</topic><topic>Severity</topic><topic>Social factors</topic><topic>social vulnerability</topic><topic>Vulnerability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pence, Justin</creatorcontrib><creatorcontrib>Miller, Ian</creatorcontrib><creatorcontrib>Sakurahara, Tatsuya</creatorcontrib><creatorcontrib>Whitacre, James</creatorcontrib><creatorcontrib>Reihani, Seyed</creatorcontrib><creatorcontrib>Kee, Ernie</creatorcontrib><creatorcontrib>Mohaghegh, Zahra</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>International Bibliography of the Social Sciences</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Risk analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pence, Justin</au><au>Miller, Ian</au><au>Sakurahara, Tatsuya</au><au>Whitacre, James</au><au>Reihani, Seyed</au><au>Kee, Ernie</au><au>Mohaghegh, Zahra</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>GIS‐Based Integration of Social Vulnerability and Level 3 Probabilistic Risk Assessment to Advance Emergency Preparedness, Planning, and Response for Severe Nuclear Power Plant Accidents</atitle><jtitle>Risk analysis</jtitle><addtitle>Risk Anal</addtitle><date>2019-06</date><risdate>2019</risdate><volume>39</volume><issue>6</issue><spage>1262</spage><epage>1280</epage><pages>1262-1280</pages><issn>0272-4332</issn><eissn>1539-6924</eissn><abstract>In the nuclear power industry, Level 3 probabilistic risk assessment (PRA) is used to estimate damage to public health and the environment if a severe accident leads to large radiological release. Current Level 3 PRA does not have an explicit inclusion of social factors and, therefore, it is not possible to perform importance ranking of social factors for risk‐informing emergency preparedness, planning, and response (EPPR). This article offers a methodology for adapting the concept of social vulnerability, commonly used in natural hazard research, in the context of a severe nuclear power plant accident. The methodology has four steps: (1) calculating a hazard‐independent social vulnerability index for the local population; (2) developing a location‐specific representation of the maximum radiological hazard estimated from current Level 3 PRA, in a geographic information system (GIS) environment; (3) developing a GIS‐based socio‐technical risk map by combining the social vulnerability index and the location‐specific radiological hazard; and (4) conducting a risk importance measure analysis to rank the criticality of social factors based on their contribution to the socio‐technical risk. The methodology is applied using results from the 2012 Surry Power Station state‐of‐the‐art reactor consequence analysis. A radiological hazard model is generated from MELCOR accident consequence code system, translated into a GIS environment, and combined with the Center for Disease Control social vulnerability index (SVI). This research creates an opportunity to explicitly consider and rank the criticality of location‐specific SVI themes based on their influence on risk, providing input for EPPR.</abstract><cop>United States</cop><pub>Blackwell Publishing Ltd</pub><pmid>30468695</pmid><doi>10.1111/risa.13241</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-9065-2349</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0272-4332 |
ispartof | Risk analysis, 2019-06, Vol.39 (6), p.1262-1280 |
issn | 0272-4332 1539-6924 |
language | eng |
recordid | cdi_proquest_miscellaneous_2137475790 |
source | Wiley Online Library Journals Frontfile Complete; Business Source Complete |
subjects | Accidents Damage assessment Disease control Electric industries Emergency management Emergency preparedness Emergency response Geographic information systems Health hazards Level 3 probabilistic risk assessment Local population Methodology Nuclear accidents & safety Nuclear energy Nuclear power plants Power Probabilistic risk assessment Probability Public health Ratings & rankings Remote sensing Research methodology Risk analysis Risk assessment Satellite navigation systems Severity Social factors social vulnerability Vulnerability |
title | GIS‐Based Integration of Social Vulnerability and Level 3 Probabilistic Risk Assessment to Advance Emergency Preparedness, Planning, and Response for Severe Nuclear Power Plant Accidents |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T17%3A20%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=GIS%E2%80%90Based%20Integration%20of%20Social%20Vulnerability%20and%20Level%203%20Probabilistic%20Risk%20Assessment%20to%20Advance%20Emergency%20Preparedness,%20Planning,%20and%20Response%20for%20Severe%20Nuclear%20Power%20Plant%20Accidents&rft.jtitle=Risk%20analysis&rft.au=Pence,%20Justin&rft.date=2019-06&rft.volume=39&rft.issue=6&rft.spage=1262&rft.epage=1280&rft.pages=1262-1280&rft.issn=0272-4332&rft.eissn=1539-6924&rft_id=info:doi/10.1111/risa.13241&rft_dat=%3Cproquest_cross%3E2137475790%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2239275495&rft_id=info:pmid/30468695&rfr_iscdi=true |