GIS‐Based Integration of Social Vulnerability and Level 3 Probabilistic Risk Assessment to Advance Emergency Preparedness, Planning, and Response for Severe Nuclear Power Plant Accidents

In the nuclear power industry, Level 3 probabilistic risk assessment (PRA) is used to estimate damage to public health and the environment if a severe accident leads to large radiological release. Current Level 3 PRA does not have an explicit inclusion of social factors and, therefore, it is not pos...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Risk analysis 2019-06, Vol.39 (6), p.1262-1280
Hauptverfasser: Pence, Justin, Miller, Ian, Sakurahara, Tatsuya, Whitacre, James, Reihani, Seyed, Kee, Ernie, Mohaghegh, Zahra
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1280
container_issue 6
container_start_page 1262
container_title Risk analysis
container_volume 39
creator Pence, Justin
Miller, Ian
Sakurahara, Tatsuya
Whitacre, James
Reihani, Seyed
Kee, Ernie
Mohaghegh, Zahra
description In the nuclear power industry, Level 3 probabilistic risk assessment (PRA) is used to estimate damage to public health and the environment if a severe accident leads to large radiological release. Current Level 3 PRA does not have an explicit inclusion of social factors and, therefore, it is not possible to perform importance ranking of social factors for risk‐informing emergency preparedness, planning, and response (EPPR). This article offers a methodology for adapting the concept of social vulnerability, commonly used in natural hazard research, in the context of a severe nuclear power plant accident. The methodology has four steps: (1) calculating a hazard‐independent social vulnerability index for the local population; (2) developing a location‐specific representation of the maximum radiological hazard estimated from current Level 3 PRA, in a geographic information system (GIS) environment; (3) developing a GIS‐based socio‐technical risk map by combining the social vulnerability index and the location‐specific radiological hazard; and (4) conducting a risk importance measure analysis to rank the criticality of social factors based on their contribution to the socio‐technical risk. The methodology is applied using results from the 2012 Surry Power Station state‐of‐the‐art reactor consequence analysis. A radiological hazard model is generated from MELCOR accident consequence code system, translated into a GIS environment, and combined with the Center for Disease Control social vulnerability index (SVI). This research creates an opportunity to explicitly consider and rank the criticality of location‐specific SVI themes based on their influence on risk, providing input for EPPR.
doi_str_mv 10.1111/risa.13241
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2137475790</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2137475790</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4591-a2ef18ef491cb9eebe38778f84ae5ac5e3e27fab5e40e7986709f3ce1f2801b93</originalsourceid><addsrcrecordid>eNp90U9uEzEUBnALgWgobDgAssQGoU7xn3E8Xg5VKZEiiBJgO_J4niOXGTvYM62y4wgciNNwEtyksGCBN5asn7_3pA-h55Sc03zeRJf0OeWspA_QjAquirli5UM0I0yyouScnaAnKV0TQgkR8jE64aScV3MlZujn1WLz6_uPtzpBhxd-hG3UowseB4s3wTjd4y9T7yHq1vVu3GPtO7yEG-gxx6sY2sN7Gp3Ba5e-4jolSGkAP-Ix4Lq70d4AvhwgbsGbff4COx2h81md4VWvvXd-e3aIXUPaBZ8A2xDxJs-IgD9Mpgcd8SrcQjz4EdfGuC5PSE_RI6v7BM_u71P0-d3lp4v3xfLj1eKiXhamFIoWmoGlFdhSUdMqgBZ4JWVlq1KD0EYAByatbgWUBKSq5pIoyw1QyypCW8VP0atj7i6GbxOksRlcMtDnbSBMqWGUy1IKqUimL_-h12GKPm_XMMYVk6JUIqvXR2ViSCmCbXbRDTruG0qau06bu06bQ6cZv7iPnNoBur_0T4kZ0CO4dT3s_xPVrBeb-hj6G6UNr9M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2239275495</pqid></control><display><type>article</type><title>GIS‐Based Integration of Social Vulnerability and Level 3 Probabilistic Risk Assessment to Advance Emergency Preparedness, Planning, and Response for Severe Nuclear Power Plant Accidents</title><source>Wiley Online Library Journals Frontfile Complete</source><source>Business Source Complete</source><creator>Pence, Justin ; Miller, Ian ; Sakurahara, Tatsuya ; Whitacre, James ; Reihani, Seyed ; Kee, Ernie ; Mohaghegh, Zahra</creator><creatorcontrib>Pence, Justin ; Miller, Ian ; Sakurahara, Tatsuya ; Whitacre, James ; Reihani, Seyed ; Kee, Ernie ; Mohaghegh, Zahra</creatorcontrib><description>In the nuclear power industry, Level 3 probabilistic risk assessment (PRA) is used to estimate damage to public health and the environment if a severe accident leads to large radiological release. Current Level 3 PRA does not have an explicit inclusion of social factors and, therefore, it is not possible to perform importance ranking of social factors for risk‐informing emergency preparedness, planning, and response (EPPR). This article offers a methodology for adapting the concept of social vulnerability, commonly used in natural hazard research, in the context of a severe nuclear power plant accident. The methodology has four steps: (1) calculating a hazard‐independent social vulnerability index for the local population; (2) developing a location‐specific representation of the maximum radiological hazard estimated from current Level 3 PRA, in a geographic information system (GIS) environment; (3) developing a GIS‐based socio‐technical risk map by combining the social vulnerability index and the location‐specific radiological hazard; and (4) conducting a risk importance measure analysis to rank the criticality of social factors based on their contribution to the socio‐technical risk. The methodology is applied using results from the 2012 Surry Power Station state‐of‐the‐art reactor consequence analysis. A radiological hazard model is generated from MELCOR accident consequence code system, translated into a GIS environment, and combined with the Center for Disease Control social vulnerability index (SVI). This research creates an opportunity to explicitly consider and rank the criticality of location‐specific SVI themes based on their influence on risk, providing input for EPPR.</description><identifier>ISSN: 0272-4332</identifier><identifier>EISSN: 1539-6924</identifier><identifier>DOI: 10.1111/risa.13241</identifier><identifier>PMID: 30468695</identifier><language>eng</language><publisher>United States: Blackwell Publishing Ltd</publisher><subject>Accidents ; Damage assessment ; Disease control ; Electric industries ; Emergency management ; Emergency preparedness ; Emergency response ; Geographic information systems ; Health hazards ; Level 3 probabilistic risk assessment ; Local population ; Methodology ; Nuclear accidents &amp; safety ; Nuclear energy ; Nuclear power plants ; Power ; Probabilistic risk assessment ; Probability ; Public health ; Ratings &amp; rankings ; Remote sensing ; Research methodology ; Risk analysis ; Risk assessment ; Satellite navigation systems ; Severity ; Social factors ; social vulnerability ; Vulnerability</subject><ispartof>Risk analysis, 2019-06, Vol.39 (6), p.1262-1280</ispartof><rights>2018 Society for Risk Analysis</rights><rights>2018 Society for Risk Analysis.</rights><rights>2019 Society for Risk Analysis</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4591-a2ef18ef491cb9eebe38778f84ae5ac5e3e27fab5e40e7986709f3ce1f2801b93</citedby><cites>FETCH-LOGICAL-c4591-a2ef18ef491cb9eebe38778f84ae5ac5e3e27fab5e40e7986709f3ce1f2801b93</cites><orcidid>0000-0002-9065-2349</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Frisa.13241$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Frisa.13241$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30468695$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pence, Justin</creatorcontrib><creatorcontrib>Miller, Ian</creatorcontrib><creatorcontrib>Sakurahara, Tatsuya</creatorcontrib><creatorcontrib>Whitacre, James</creatorcontrib><creatorcontrib>Reihani, Seyed</creatorcontrib><creatorcontrib>Kee, Ernie</creatorcontrib><creatorcontrib>Mohaghegh, Zahra</creatorcontrib><title>GIS‐Based Integration of Social Vulnerability and Level 3 Probabilistic Risk Assessment to Advance Emergency Preparedness, Planning, and Response for Severe Nuclear Power Plant Accidents</title><title>Risk analysis</title><addtitle>Risk Anal</addtitle><description>In the nuclear power industry, Level 3 probabilistic risk assessment (PRA) is used to estimate damage to public health and the environment if a severe accident leads to large radiological release. Current Level 3 PRA does not have an explicit inclusion of social factors and, therefore, it is not possible to perform importance ranking of social factors for risk‐informing emergency preparedness, planning, and response (EPPR). This article offers a methodology for adapting the concept of social vulnerability, commonly used in natural hazard research, in the context of a severe nuclear power plant accident. The methodology has four steps: (1) calculating a hazard‐independent social vulnerability index for the local population; (2) developing a location‐specific representation of the maximum radiological hazard estimated from current Level 3 PRA, in a geographic information system (GIS) environment; (3) developing a GIS‐based socio‐technical risk map by combining the social vulnerability index and the location‐specific radiological hazard; and (4) conducting a risk importance measure analysis to rank the criticality of social factors based on their contribution to the socio‐technical risk. The methodology is applied using results from the 2012 Surry Power Station state‐of‐the‐art reactor consequence analysis. A radiological hazard model is generated from MELCOR accident consequence code system, translated into a GIS environment, and combined with the Center for Disease Control social vulnerability index (SVI). This research creates an opportunity to explicitly consider and rank the criticality of location‐specific SVI themes based on their influence on risk, providing input for EPPR.</description><subject>Accidents</subject><subject>Damage assessment</subject><subject>Disease control</subject><subject>Electric industries</subject><subject>Emergency management</subject><subject>Emergency preparedness</subject><subject>Emergency response</subject><subject>Geographic information systems</subject><subject>Health hazards</subject><subject>Level 3 probabilistic risk assessment</subject><subject>Local population</subject><subject>Methodology</subject><subject>Nuclear accidents &amp; safety</subject><subject>Nuclear energy</subject><subject>Nuclear power plants</subject><subject>Power</subject><subject>Probabilistic risk assessment</subject><subject>Probability</subject><subject>Public health</subject><subject>Ratings &amp; rankings</subject><subject>Remote sensing</subject><subject>Research methodology</subject><subject>Risk analysis</subject><subject>Risk assessment</subject><subject>Satellite navigation systems</subject><subject>Severity</subject><subject>Social factors</subject><subject>social vulnerability</subject><subject>Vulnerability</subject><issn>0272-4332</issn><issn>1539-6924</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp90U9uEzEUBnALgWgobDgAssQGoU7xn3E8Xg5VKZEiiBJgO_J4niOXGTvYM62y4wgciNNwEtyksGCBN5asn7_3pA-h55Sc03zeRJf0OeWspA_QjAquirli5UM0I0yyouScnaAnKV0TQgkR8jE64aScV3MlZujn1WLz6_uPtzpBhxd-hG3UowseB4s3wTjd4y9T7yHq1vVu3GPtO7yEG-gxx6sY2sN7Gp3Ba5e-4jolSGkAP-Ix4Lq70d4AvhwgbsGbff4COx2h81md4VWvvXd-e3aIXUPaBZ8A2xDxJs-IgD9Mpgcd8SrcQjz4EdfGuC5PSE_RI6v7BM_u71P0-d3lp4v3xfLj1eKiXhamFIoWmoGlFdhSUdMqgBZ4JWVlq1KD0EYAByatbgWUBKSq5pIoyw1QyypCW8VP0atj7i6GbxOksRlcMtDnbSBMqWGUy1IKqUimL_-h12GKPm_XMMYVk6JUIqvXR2ViSCmCbXbRDTruG0qau06bu06bQ6cZv7iPnNoBur_0T4kZ0CO4dT3s_xPVrBeb-hj6G6UNr9M</recordid><startdate>201906</startdate><enddate>201906</enddate><creator>Pence, Justin</creator><creator>Miller, Ian</creator><creator>Sakurahara, Tatsuya</creator><creator>Whitacre, James</creator><creator>Reihani, Seyed</creator><creator>Kee, Ernie</creator><creator>Mohaghegh, Zahra</creator><general>Blackwell Publishing Ltd</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7U7</scope><scope>7U9</scope><scope>8BJ</scope><scope>8FD</scope><scope>C1K</scope><scope>FQK</scope><scope>FR3</scope><scope>H94</scope><scope>JBE</scope><scope>JQ2</scope><scope>KR7</scope><scope>M7N</scope><scope>SOI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9065-2349</orcidid></search><sort><creationdate>201906</creationdate><title>GIS‐Based Integration of Social Vulnerability and Level 3 Probabilistic Risk Assessment to Advance Emergency Preparedness, Planning, and Response for Severe Nuclear Power Plant Accidents</title><author>Pence, Justin ; Miller, Ian ; Sakurahara, Tatsuya ; Whitacre, James ; Reihani, Seyed ; Kee, Ernie ; Mohaghegh, Zahra</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4591-a2ef18ef491cb9eebe38778f84ae5ac5e3e27fab5e40e7986709f3ce1f2801b93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Accidents</topic><topic>Damage assessment</topic><topic>Disease control</topic><topic>Electric industries</topic><topic>Emergency management</topic><topic>Emergency preparedness</topic><topic>Emergency response</topic><topic>Geographic information systems</topic><topic>Health hazards</topic><topic>Level 3 probabilistic risk assessment</topic><topic>Local population</topic><topic>Methodology</topic><topic>Nuclear accidents &amp; safety</topic><topic>Nuclear energy</topic><topic>Nuclear power plants</topic><topic>Power</topic><topic>Probabilistic risk assessment</topic><topic>Probability</topic><topic>Public health</topic><topic>Ratings &amp; rankings</topic><topic>Remote sensing</topic><topic>Research methodology</topic><topic>Risk analysis</topic><topic>Risk assessment</topic><topic>Satellite navigation systems</topic><topic>Severity</topic><topic>Social factors</topic><topic>social vulnerability</topic><topic>Vulnerability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pence, Justin</creatorcontrib><creatorcontrib>Miller, Ian</creatorcontrib><creatorcontrib>Sakurahara, Tatsuya</creatorcontrib><creatorcontrib>Whitacre, James</creatorcontrib><creatorcontrib>Reihani, Seyed</creatorcontrib><creatorcontrib>Kee, Ernie</creatorcontrib><creatorcontrib>Mohaghegh, Zahra</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>International Bibliography of the Social Sciences</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Risk analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pence, Justin</au><au>Miller, Ian</au><au>Sakurahara, Tatsuya</au><au>Whitacre, James</au><au>Reihani, Seyed</au><au>Kee, Ernie</au><au>Mohaghegh, Zahra</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>GIS‐Based Integration of Social Vulnerability and Level 3 Probabilistic Risk Assessment to Advance Emergency Preparedness, Planning, and Response for Severe Nuclear Power Plant Accidents</atitle><jtitle>Risk analysis</jtitle><addtitle>Risk Anal</addtitle><date>2019-06</date><risdate>2019</risdate><volume>39</volume><issue>6</issue><spage>1262</spage><epage>1280</epage><pages>1262-1280</pages><issn>0272-4332</issn><eissn>1539-6924</eissn><abstract>In the nuclear power industry, Level 3 probabilistic risk assessment (PRA) is used to estimate damage to public health and the environment if a severe accident leads to large radiological release. Current Level 3 PRA does not have an explicit inclusion of social factors and, therefore, it is not possible to perform importance ranking of social factors for risk‐informing emergency preparedness, planning, and response (EPPR). This article offers a methodology for adapting the concept of social vulnerability, commonly used in natural hazard research, in the context of a severe nuclear power plant accident. The methodology has four steps: (1) calculating a hazard‐independent social vulnerability index for the local population; (2) developing a location‐specific representation of the maximum radiological hazard estimated from current Level 3 PRA, in a geographic information system (GIS) environment; (3) developing a GIS‐based socio‐technical risk map by combining the social vulnerability index and the location‐specific radiological hazard; and (4) conducting a risk importance measure analysis to rank the criticality of social factors based on their contribution to the socio‐technical risk. The methodology is applied using results from the 2012 Surry Power Station state‐of‐the‐art reactor consequence analysis. A radiological hazard model is generated from MELCOR accident consequence code system, translated into a GIS environment, and combined with the Center for Disease Control social vulnerability index (SVI). This research creates an opportunity to explicitly consider and rank the criticality of location‐specific SVI themes based on their influence on risk, providing input for EPPR.</abstract><cop>United States</cop><pub>Blackwell Publishing Ltd</pub><pmid>30468695</pmid><doi>10.1111/risa.13241</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-9065-2349</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0272-4332
ispartof Risk analysis, 2019-06, Vol.39 (6), p.1262-1280
issn 0272-4332
1539-6924
language eng
recordid cdi_proquest_miscellaneous_2137475790
source Wiley Online Library Journals Frontfile Complete; Business Source Complete
subjects Accidents
Damage assessment
Disease control
Electric industries
Emergency management
Emergency preparedness
Emergency response
Geographic information systems
Health hazards
Level 3 probabilistic risk assessment
Local population
Methodology
Nuclear accidents & safety
Nuclear energy
Nuclear power plants
Power
Probabilistic risk assessment
Probability
Public health
Ratings & rankings
Remote sensing
Research methodology
Risk analysis
Risk assessment
Satellite navigation systems
Severity
Social factors
social vulnerability
Vulnerability
title GIS‐Based Integration of Social Vulnerability and Level 3 Probabilistic Risk Assessment to Advance Emergency Preparedness, Planning, and Response for Severe Nuclear Power Plant Accidents
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T17%3A20%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=GIS%E2%80%90Based%20Integration%20of%20Social%20Vulnerability%20and%20Level%203%20Probabilistic%20Risk%20Assessment%20to%20Advance%20Emergency%20Preparedness,%20Planning,%20and%20Response%20for%20Severe%20Nuclear%20Power%20Plant%20Accidents&rft.jtitle=Risk%20analysis&rft.au=Pence,%20Justin&rft.date=2019-06&rft.volume=39&rft.issue=6&rft.spage=1262&rft.epage=1280&rft.pages=1262-1280&rft.issn=0272-4332&rft.eissn=1539-6924&rft_id=info:doi/10.1111/risa.13241&rft_dat=%3Cproquest_cross%3E2137475790%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2239275495&rft_id=info:pmid/30468695&rfr_iscdi=true