Amorphous Silicon with Extremely Low Absorption: Beating Thermal Noise in Gravitational Astronomy
Amorphous silicon has ideal properties for many applications in fundamental research and industry. However, the optical absorption is often unacceptably high, particularly for gravitational-wave detection. We report a novel ion-beam deposition method for fabricating amorphous silicon with unpreceden...
Gespeichert in:
Veröffentlicht in: | Physical review letters 2018-11, Vol.121 (19), p.191101-191101, Article 191101 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 191101 |
---|---|
container_issue | 19 |
container_start_page | 191101 |
container_title | Physical review letters |
container_volume | 121 |
creator | Birney, R Steinlechner, J Tornasi, Z MacFoy, S Vine, D Bell, A S Gibson, D Hough, J Rowan, S Sortais, P Sproules, S Tait, S Martin, I W Reid, S |
description | Amorphous silicon has ideal properties for many applications in fundamental research and industry. However, the optical absorption is often unacceptably high, particularly for gravitational-wave detection. We report a novel ion-beam deposition method for fabricating amorphous silicon with unprecedentedly low unpaired electron-spin density and optical absorption, the spin limit on absorption being surpassed for the first time. At low unpaired electron density, the absorption is no longer correlated with electron spins, but with the electronic mobility gap. Compared to standard ion-beam deposition, the absorption at 1550 nm is lower by a factor of ≈100. This breakthrough shows that amorphous silicon could be exploited as an extreme performance optical coating in near-infrared applications, and it represents an important proof of concept for future gravitational-wave detectors. |
doi_str_mv | 10.1103/PhysRevLett.121.191101 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2137474900</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2137474900</sourcerecordid><originalsourceid>FETCH-LOGICAL-c440t-f4931b2c5a85590fbce1cbf230b39a3773571a01dc6eaa51fe180d7db6420cdc3</originalsourceid><addsrcrecordid>eNpdkVtLxDAQhYMoul7-ggR88aXrTNI2rW-reINFxctzSdPUjbTNmmTV_fdmWRXxaeDwncPMHEIOEcaIwE_uZ0v_oN-nOoQxMhxjGWXcICMEUSYCMd0kIwCOSQkgdsiu968AgCwvtskOhzQvskKMiJz01s1nduHpo-mMsgP9MGFGLz6D073ulnRqP-ik9pEKxg6n9EzLYIYX-jTTrpcdvbXGa2oGeuXkuwlyRUV54oOzg-2X-2SrlZ3XB99zjzxfXjydXyfTu6ub88k0UWkKIWnTkmPNVCaLLCuhrZVGVbeMQ81LyYXgmUAJ2KhcS5lhq7GARjR1njJQjeJ75HidO3f2baF9qHrjle46Oeh4XsWQi1Sk8R0RPfqHvtqFi1uvqAwyxnjJIpWvKeWs90631dyZXrplhVCtSqj-lFDFEqp1CdF4-B2_qHvd_Np-vs6_AM-chn0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2150522392</pqid></control><display><type>article</type><title>Amorphous Silicon with Extremely Low Absorption: Beating Thermal Noise in Gravitational Astronomy</title><source>American Physical Society Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Birney, R ; Steinlechner, J ; Tornasi, Z ; MacFoy, S ; Vine, D ; Bell, A S ; Gibson, D ; Hough, J ; Rowan, S ; Sortais, P ; Sproules, S ; Tait, S ; Martin, I W ; Reid, S</creator><creatorcontrib>Birney, R ; Steinlechner, J ; Tornasi, Z ; MacFoy, S ; Vine, D ; Bell, A S ; Gibson, D ; Hough, J ; Rowan, S ; Sortais, P ; Sproules, S ; Tait, S ; Martin, I W ; Reid, S</creatorcontrib><description>Amorphous silicon has ideal properties for many applications in fundamental research and industry. However, the optical absorption is often unacceptably high, particularly for gravitational-wave detection. We report a novel ion-beam deposition method for fabricating amorphous silicon with unprecedentedly low unpaired electron-spin density and optical absorption, the spin limit on absorption being surpassed for the first time. At low unpaired electron density, the absorption is no longer correlated with electron spins, but with the electronic mobility gap. Compared to standard ion-beam deposition, the absorption at 1550 nm is lower by a factor of ≈100. This breakthrough shows that amorphous silicon could be exploited as an extreme performance optical coating in near-infrared applications, and it represents an important proof of concept for future gravitational-wave detectors.</description><identifier>ISSN: 0031-9007</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/PhysRevLett.121.191101</identifier><identifier>PMID: 30468587</identifier><language>eng</language><publisher>United States: American Physical Society</publisher><subject>Absorption ; Amorphous silicon ; Astronomy ; Deposition ; Electron density ; Electron spin ; Gravitation ; Gravitational waves ; Ion beams ; Optical coatings ; Photovoltaic cells ; Silicon ; Thermal noise</subject><ispartof>Physical review letters, 2018-11, Vol.121 (19), p.191101-191101, Article 191101</ispartof><rights>Copyright American Physical Society Nov 9, 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c440t-f4931b2c5a85590fbce1cbf230b39a3773571a01dc6eaa51fe180d7db6420cdc3</citedby><cites>FETCH-LOGICAL-c440t-f4931b2c5a85590fbce1cbf230b39a3773571a01dc6eaa51fe180d7db6420cdc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,2863,2864,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30468587$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Birney, R</creatorcontrib><creatorcontrib>Steinlechner, J</creatorcontrib><creatorcontrib>Tornasi, Z</creatorcontrib><creatorcontrib>MacFoy, S</creatorcontrib><creatorcontrib>Vine, D</creatorcontrib><creatorcontrib>Bell, A S</creatorcontrib><creatorcontrib>Gibson, D</creatorcontrib><creatorcontrib>Hough, J</creatorcontrib><creatorcontrib>Rowan, S</creatorcontrib><creatorcontrib>Sortais, P</creatorcontrib><creatorcontrib>Sproules, S</creatorcontrib><creatorcontrib>Tait, S</creatorcontrib><creatorcontrib>Martin, I W</creatorcontrib><creatorcontrib>Reid, S</creatorcontrib><title>Amorphous Silicon with Extremely Low Absorption: Beating Thermal Noise in Gravitational Astronomy</title><title>Physical review letters</title><addtitle>Phys Rev Lett</addtitle><description>Amorphous silicon has ideal properties for many applications in fundamental research and industry. However, the optical absorption is often unacceptably high, particularly for gravitational-wave detection. We report a novel ion-beam deposition method for fabricating amorphous silicon with unprecedentedly low unpaired electron-spin density and optical absorption, the spin limit on absorption being surpassed for the first time. At low unpaired electron density, the absorption is no longer correlated with electron spins, but with the electronic mobility gap. Compared to standard ion-beam deposition, the absorption at 1550 nm is lower by a factor of ≈100. This breakthrough shows that amorphous silicon could be exploited as an extreme performance optical coating in near-infrared applications, and it represents an important proof of concept for future gravitational-wave detectors.</description><subject>Absorption</subject><subject>Amorphous silicon</subject><subject>Astronomy</subject><subject>Deposition</subject><subject>Electron density</subject><subject>Electron spin</subject><subject>Gravitation</subject><subject>Gravitational waves</subject><subject>Ion beams</subject><subject>Optical coatings</subject><subject>Photovoltaic cells</subject><subject>Silicon</subject><subject>Thermal noise</subject><issn>0031-9007</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpdkVtLxDAQhYMoul7-ggR88aXrTNI2rW-reINFxctzSdPUjbTNmmTV_fdmWRXxaeDwncPMHEIOEcaIwE_uZ0v_oN-nOoQxMhxjGWXcICMEUSYCMd0kIwCOSQkgdsiu968AgCwvtskOhzQvskKMiJz01s1nduHpo-mMsgP9MGFGLz6D073ulnRqP-ik9pEKxg6n9EzLYIYX-jTTrpcdvbXGa2oGeuXkuwlyRUV54oOzg-2X-2SrlZ3XB99zjzxfXjydXyfTu6ub88k0UWkKIWnTkmPNVCaLLCuhrZVGVbeMQ81LyYXgmUAJ2KhcS5lhq7GARjR1njJQjeJ75HidO3f2baF9qHrjle46Oeh4XsWQi1Sk8R0RPfqHvtqFi1uvqAwyxnjJIpWvKeWs90631dyZXrplhVCtSqj-lFDFEqp1CdF4-B2_qHvd_Np-vs6_AM-chn0</recordid><startdate>20181109</startdate><enddate>20181109</enddate><creator>Birney, R</creator><creator>Steinlechner, J</creator><creator>Tornasi, Z</creator><creator>MacFoy, S</creator><creator>Vine, D</creator><creator>Bell, A S</creator><creator>Gibson, D</creator><creator>Hough, J</creator><creator>Rowan, S</creator><creator>Sortais, P</creator><creator>Sproules, S</creator><creator>Tait, S</creator><creator>Martin, I W</creator><creator>Reid, S</creator><general>American Physical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20181109</creationdate><title>Amorphous Silicon with Extremely Low Absorption: Beating Thermal Noise in Gravitational Astronomy</title><author>Birney, R ; Steinlechner, J ; Tornasi, Z ; MacFoy, S ; Vine, D ; Bell, A S ; Gibson, D ; Hough, J ; Rowan, S ; Sortais, P ; Sproules, S ; Tait, S ; Martin, I W ; Reid, S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c440t-f4931b2c5a85590fbce1cbf230b39a3773571a01dc6eaa51fe180d7db6420cdc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Absorption</topic><topic>Amorphous silicon</topic><topic>Astronomy</topic><topic>Deposition</topic><topic>Electron density</topic><topic>Electron spin</topic><topic>Gravitation</topic><topic>Gravitational waves</topic><topic>Ion beams</topic><topic>Optical coatings</topic><topic>Photovoltaic cells</topic><topic>Silicon</topic><topic>Thermal noise</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Birney, R</creatorcontrib><creatorcontrib>Steinlechner, J</creatorcontrib><creatorcontrib>Tornasi, Z</creatorcontrib><creatorcontrib>MacFoy, S</creatorcontrib><creatorcontrib>Vine, D</creatorcontrib><creatorcontrib>Bell, A S</creatorcontrib><creatorcontrib>Gibson, D</creatorcontrib><creatorcontrib>Hough, J</creatorcontrib><creatorcontrib>Rowan, S</creatorcontrib><creatorcontrib>Sortais, P</creatorcontrib><creatorcontrib>Sproules, S</creatorcontrib><creatorcontrib>Tait, S</creatorcontrib><creatorcontrib>Martin, I W</creatorcontrib><creatorcontrib>Reid, S</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Birney, R</au><au>Steinlechner, J</au><au>Tornasi, Z</au><au>MacFoy, S</au><au>Vine, D</au><au>Bell, A S</au><au>Gibson, D</au><au>Hough, J</au><au>Rowan, S</au><au>Sortais, P</au><au>Sproules, S</au><au>Tait, S</au><au>Martin, I W</au><au>Reid, S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Amorphous Silicon with Extremely Low Absorption: Beating Thermal Noise in Gravitational Astronomy</atitle><jtitle>Physical review letters</jtitle><addtitle>Phys Rev Lett</addtitle><date>2018-11-09</date><risdate>2018</risdate><volume>121</volume><issue>19</issue><spage>191101</spage><epage>191101</epage><pages>191101-191101</pages><artnum>191101</artnum><issn>0031-9007</issn><eissn>1079-7114</eissn><abstract>Amorphous silicon has ideal properties for many applications in fundamental research and industry. However, the optical absorption is often unacceptably high, particularly for gravitational-wave detection. We report a novel ion-beam deposition method for fabricating amorphous silicon with unprecedentedly low unpaired electron-spin density and optical absorption, the spin limit on absorption being surpassed for the first time. At low unpaired electron density, the absorption is no longer correlated with electron spins, but with the electronic mobility gap. Compared to standard ion-beam deposition, the absorption at 1550 nm is lower by a factor of ≈100. This breakthrough shows that amorphous silicon could be exploited as an extreme performance optical coating in near-infrared applications, and it represents an important proof of concept for future gravitational-wave detectors.</abstract><cop>United States</cop><pub>American Physical Society</pub><pmid>30468587</pmid><doi>10.1103/PhysRevLett.121.191101</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0031-9007 |
ispartof | Physical review letters, 2018-11, Vol.121 (19), p.191101-191101, Article 191101 |
issn | 0031-9007 1079-7114 |
language | eng |
recordid | cdi_proquest_miscellaneous_2137474900 |
source | American Physical Society Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Absorption Amorphous silicon Astronomy Deposition Electron density Electron spin Gravitation Gravitational waves Ion beams Optical coatings Photovoltaic cells Silicon Thermal noise |
title | Amorphous Silicon with Extremely Low Absorption: Beating Thermal Noise in Gravitational Astronomy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T17%3A23%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Amorphous%20Silicon%20with%20Extremely%20Low%20Absorption:%20Beating%20Thermal%20Noise%20in%20Gravitational%20Astronomy&rft.jtitle=Physical%20review%20letters&rft.au=Birney,%20R&rft.date=2018-11-09&rft.volume=121&rft.issue=19&rft.spage=191101&rft.epage=191101&rft.pages=191101-191101&rft.artnum=191101&rft.issn=0031-9007&rft.eissn=1079-7114&rft_id=info:doi/10.1103/PhysRevLett.121.191101&rft_dat=%3Cproquest_cross%3E2137474900%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2150522392&rft_id=info:pmid/30468587&rfr_iscdi=true |