Amorphous Silicon with Extremely Low Absorption: Beating Thermal Noise in Gravitational Astronomy

Amorphous silicon has ideal properties for many applications in fundamental research and industry. However, the optical absorption is often unacceptably high, particularly for gravitational-wave detection. We report a novel ion-beam deposition method for fabricating amorphous silicon with unpreceden...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review letters 2018-11, Vol.121 (19), p.191101-191101, Article 191101
Hauptverfasser: Birney, R, Steinlechner, J, Tornasi, Z, MacFoy, S, Vine, D, Bell, A S, Gibson, D, Hough, J, Rowan, S, Sortais, P, Sproules, S, Tait, S, Martin, I W, Reid, S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 191101
container_issue 19
container_start_page 191101
container_title Physical review letters
container_volume 121
creator Birney, R
Steinlechner, J
Tornasi, Z
MacFoy, S
Vine, D
Bell, A S
Gibson, D
Hough, J
Rowan, S
Sortais, P
Sproules, S
Tait, S
Martin, I W
Reid, S
description Amorphous silicon has ideal properties for many applications in fundamental research and industry. However, the optical absorption is often unacceptably high, particularly for gravitational-wave detection. We report a novel ion-beam deposition method for fabricating amorphous silicon with unprecedentedly low unpaired electron-spin density and optical absorption, the spin limit on absorption being surpassed for the first time. At low unpaired electron density, the absorption is no longer correlated with electron spins, but with the electronic mobility gap. Compared to standard ion-beam deposition, the absorption at 1550 nm is lower by a factor of ≈100. This breakthrough shows that amorphous silicon could be exploited as an extreme performance optical coating in near-infrared applications, and it represents an important proof of concept for future gravitational-wave detectors.
doi_str_mv 10.1103/PhysRevLett.121.191101
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2137474900</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2137474900</sourcerecordid><originalsourceid>FETCH-LOGICAL-c440t-f4931b2c5a85590fbce1cbf230b39a3773571a01dc6eaa51fe180d7db6420cdc3</originalsourceid><addsrcrecordid>eNpdkVtLxDAQhYMoul7-ggR88aXrTNI2rW-reINFxctzSdPUjbTNmmTV_fdmWRXxaeDwncPMHEIOEcaIwE_uZ0v_oN-nOoQxMhxjGWXcICMEUSYCMd0kIwCOSQkgdsiu968AgCwvtskOhzQvskKMiJz01s1nduHpo-mMsgP9MGFGLz6D073ulnRqP-ik9pEKxg6n9EzLYIYX-jTTrpcdvbXGa2oGeuXkuwlyRUV54oOzg-2X-2SrlZ3XB99zjzxfXjydXyfTu6ub88k0UWkKIWnTkmPNVCaLLCuhrZVGVbeMQ81LyYXgmUAJ2KhcS5lhq7GARjR1njJQjeJ75HidO3f2baF9qHrjle46Oeh4XsWQi1Sk8R0RPfqHvtqFi1uvqAwyxnjJIpWvKeWs90631dyZXrplhVCtSqj-lFDFEqp1CdF4-B2_qHvd_Np-vs6_AM-chn0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2150522392</pqid></control><display><type>article</type><title>Amorphous Silicon with Extremely Low Absorption: Beating Thermal Noise in Gravitational Astronomy</title><source>American Physical Society Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Birney, R ; Steinlechner, J ; Tornasi, Z ; MacFoy, S ; Vine, D ; Bell, A S ; Gibson, D ; Hough, J ; Rowan, S ; Sortais, P ; Sproules, S ; Tait, S ; Martin, I W ; Reid, S</creator><creatorcontrib>Birney, R ; Steinlechner, J ; Tornasi, Z ; MacFoy, S ; Vine, D ; Bell, A S ; Gibson, D ; Hough, J ; Rowan, S ; Sortais, P ; Sproules, S ; Tait, S ; Martin, I W ; Reid, S</creatorcontrib><description>Amorphous silicon has ideal properties for many applications in fundamental research and industry. However, the optical absorption is often unacceptably high, particularly for gravitational-wave detection. We report a novel ion-beam deposition method for fabricating amorphous silicon with unprecedentedly low unpaired electron-spin density and optical absorption, the spin limit on absorption being surpassed for the first time. At low unpaired electron density, the absorption is no longer correlated with electron spins, but with the electronic mobility gap. Compared to standard ion-beam deposition, the absorption at 1550 nm is lower by a factor of ≈100. This breakthrough shows that amorphous silicon could be exploited as an extreme performance optical coating in near-infrared applications, and it represents an important proof of concept for future gravitational-wave detectors.</description><identifier>ISSN: 0031-9007</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/PhysRevLett.121.191101</identifier><identifier>PMID: 30468587</identifier><language>eng</language><publisher>United States: American Physical Society</publisher><subject>Absorption ; Amorphous silicon ; Astronomy ; Deposition ; Electron density ; Electron spin ; Gravitation ; Gravitational waves ; Ion beams ; Optical coatings ; Photovoltaic cells ; Silicon ; Thermal noise</subject><ispartof>Physical review letters, 2018-11, Vol.121 (19), p.191101-191101, Article 191101</ispartof><rights>Copyright American Physical Society Nov 9, 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c440t-f4931b2c5a85590fbce1cbf230b39a3773571a01dc6eaa51fe180d7db6420cdc3</citedby><cites>FETCH-LOGICAL-c440t-f4931b2c5a85590fbce1cbf230b39a3773571a01dc6eaa51fe180d7db6420cdc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,2863,2864,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30468587$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Birney, R</creatorcontrib><creatorcontrib>Steinlechner, J</creatorcontrib><creatorcontrib>Tornasi, Z</creatorcontrib><creatorcontrib>MacFoy, S</creatorcontrib><creatorcontrib>Vine, D</creatorcontrib><creatorcontrib>Bell, A S</creatorcontrib><creatorcontrib>Gibson, D</creatorcontrib><creatorcontrib>Hough, J</creatorcontrib><creatorcontrib>Rowan, S</creatorcontrib><creatorcontrib>Sortais, P</creatorcontrib><creatorcontrib>Sproules, S</creatorcontrib><creatorcontrib>Tait, S</creatorcontrib><creatorcontrib>Martin, I W</creatorcontrib><creatorcontrib>Reid, S</creatorcontrib><title>Amorphous Silicon with Extremely Low Absorption: Beating Thermal Noise in Gravitational Astronomy</title><title>Physical review letters</title><addtitle>Phys Rev Lett</addtitle><description>Amorphous silicon has ideal properties for many applications in fundamental research and industry. However, the optical absorption is often unacceptably high, particularly for gravitational-wave detection. We report a novel ion-beam deposition method for fabricating amorphous silicon with unprecedentedly low unpaired electron-spin density and optical absorption, the spin limit on absorption being surpassed for the first time. At low unpaired electron density, the absorption is no longer correlated with electron spins, but with the electronic mobility gap. Compared to standard ion-beam deposition, the absorption at 1550 nm is lower by a factor of ≈100. This breakthrough shows that amorphous silicon could be exploited as an extreme performance optical coating in near-infrared applications, and it represents an important proof of concept for future gravitational-wave detectors.</description><subject>Absorption</subject><subject>Amorphous silicon</subject><subject>Astronomy</subject><subject>Deposition</subject><subject>Electron density</subject><subject>Electron spin</subject><subject>Gravitation</subject><subject>Gravitational waves</subject><subject>Ion beams</subject><subject>Optical coatings</subject><subject>Photovoltaic cells</subject><subject>Silicon</subject><subject>Thermal noise</subject><issn>0031-9007</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpdkVtLxDAQhYMoul7-ggR88aXrTNI2rW-reINFxctzSdPUjbTNmmTV_fdmWRXxaeDwncPMHEIOEcaIwE_uZ0v_oN-nOoQxMhxjGWXcICMEUSYCMd0kIwCOSQkgdsiu968AgCwvtskOhzQvskKMiJz01s1nduHpo-mMsgP9MGFGLz6D073ulnRqP-ik9pEKxg6n9EzLYIYX-jTTrpcdvbXGa2oGeuXkuwlyRUV54oOzg-2X-2SrlZ3XB99zjzxfXjydXyfTu6ub88k0UWkKIWnTkmPNVCaLLCuhrZVGVbeMQ81LyYXgmUAJ2KhcS5lhq7GARjR1njJQjeJ75HidO3f2baF9qHrjle46Oeh4XsWQi1Sk8R0RPfqHvtqFi1uvqAwyxnjJIpWvKeWs90631dyZXrplhVCtSqj-lFDFEqp1CdF4-B2_qHvd_Np-vs6_AM-chn0</recordid><startdate>20181109</startdate><enddate>20181109</enddate><creator>Birney, R</creator><creator>Steinlechner, J</creator><creator>Tornasi, Z</creator><creator>MacFoy, S</creator><creator>Vine, D</creator><creator>Bell, A S</creator><creator>Gibson, D</creator><creator>Hough, J</creator><creator>Rowan, S</creator><creator>Sortais, P</creator><creator>Sproules, S</creator><creator>Tait, S</creator><creator>Martin, I W</creator><creator>Reid, S</creator><general>American Physical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20181109</creationdate><title>Amorphous Silicon with Extremely Low Absorption: Beating Thermal Noise in Gravitational Astronomy</title><author>Birney, R ; Steinlechner, J ; Tornasi, Z ; MacFoy, S ; Vine, D ; Bell, A S ; Gibson, D ; Hough, J ; Rowan, S ; Sortais, P ; Sproules, S ; Tait, S ; Martin, I W ; Reid, S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c440t-f4931b2c5a85590fbce1cbf230b39a3773571a01dc6eaa51fe180d7db6420cdc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Absorption</topic><topic>Amorphous silicon</topic><topic>Astronomy</topic><topic>Deposition</topic><topic>Electron density</topic><topic>Electron spin</topic><topic>Gravitation</topic><topic>Gravitational waves</topic><topic>Ion beams</topic><topic>Optical coatings</topic><topic>Photovoltaic cells</topic><topic>Silicon</topic><topic>Thermal noise</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Birney, R</creatorcontrib><creatorcontrib>Steinlechner, J</creatorcontrib><creatorcontrib>Tornasi, Z</creatorcontrib><creatorcontrib>MacFoy, S</creatorcontrib><creatorcontrib>Vine, D</creatorcontrib><creatorcontrib>Bell, A S</creatorcontrib><creatorcontrib>Gibson, D</creatorcontrib><creatorcontrib>Hough, J</creatorcontrib><creatorcontrib>Rowan, S</creatorcontrib><creatorcontrib>Sortais, P</creatorcontrib><creatorcontrib>Sproules, S</creatorcontrib><creatorcontrib>Tait, S</creatorcontrib><creatorcontrib>Martin, I W</creatorcontrib><creatorcontrib>Reid, S</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Birney, R</au><au>Steinlechner, J</au><au>Tornasi, Z</au><au>MacFoy, S</au><au>Vine, D</au><au>Bell, A S</au><au>Gibson, D</au><au>Hough, J</au><au>Rowan, S</au><au>Sortais, P</au><au>Sproules, S</au><au>Tait, S</au><au>Martin, I W</au><au>Reid, S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Amorphous Silicon with Extremely Low Absorption: Beating Thermal Noise in Gravitational Astronomy</atitle><jtitle>Physical review letters</jtitle><addtitle>Phys Rev Lett</addtitle><date>2018-11-09</date><risdate>2018</risdate><volume>121</volume><issue>19</issue><spage>191101</spage><epage>191101</epage><pages>191101-191101</pages><artnum>191101</artnum><issn>0031-9007</issn><eissn>1079-7114</eissn><abstract>Amorphous silicon has ideal properties for many applications in fundamental research and industry. However, the optical absorption is often unacceptably high, particularly for gravitational-wave detection. We report a novel ion-beam deposition method for fabricating amorphous silicon with unprecedentedly low unpaired electron-spin density and optical absorption, the spin limit on absorption being surpassed for the first time. At low unpaired electron density, the absorption is no longer correlated with electron spins, but with the electronic mobility gap. Compared to standard ion-beam deposition, the absorption at 1550 nm is lower by a factor of ≈100. This breakthrough shows that amorphous silicon could be exploited as an extreme performance optical coating in near-infrared applications, and it represents an important proof of concept for future gravitational-wave detectors.</abstract><cop>United States</cop><pub>American Physical Society</pub><pmid>30468587</pmid><doi>10.1103/PhysRevLett.121.191101</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0031-9007
ispartof Physical review letters, 2018-11, Vol.121 (19), p.191101-191101, Article 191101
issn 0031-9007
1079-7114
language eng
recordid cdi_proquest_miscellaneous_2137474900
source American Physical Society Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Absorption
Amorphous silicon
Astronomy
Deposition
Electron density
Electron spin
Gravitation
Gravitational waves
Ion beams
Optical coatings
Photovoltaic cells
Silicon
Thermal noise
title Amorphous Silicon with Extremely Low Absorption: Beating Thermal Noise in Gravitational Astronomy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T17%3A23%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Amorphous%20Silicon%20with%20Extremely%20Low%20Absorption:%20Beating%20Thermal%20Noise%20in%20Gravitational%20Astronomy&rft.jtitle=Physical%20review%20letters&rft.au=Birney,%20R&rft.date=2018-11-09&rft.volume=121&rft.issue=19&rft.spage=191101&rft.epage=191101&rft.pages=191101-191101&rft.artnum=191101&rft.issn=0031-9007&rft.eissn=1079-7114&rft_id=info:doi/10.1103/PhysRevLett.121.191101&rft_dat=%3Cproquest_cross%3E2137474900%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2150522392&rft_id=info:pmid/30468587&rfr_iscdi=true