Melting Si: Beyond Density Functional Theory

The melting point of silicon in the cubic diamond phase is calculated using the random phase approximation (RPA). The RPA includes exact exchange as well as an approximate treatment of local as well as nonlocal many body correlation effects of the electrons. We predict a melting temperature of about...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review letters 2018-11, Vol.121 (19), p.195701-195701, Article 195701
Hauptverfasser: Dorner, Florian, Sukurma, Zoran, Dellago, Christoph, Kresse, Georg
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 195701
container_issue 19
container_start_page 195701
container_title Physical review letters
container_volume 121
creator Dorner, Florian
Sukurma, Zoran
Dellago, Christoph
Kresse, Georg
description The melting point of silicon in the cubic diamond phase is calculated using the random phase approximation (RPA). The RPA includes exact exchange as well as an approximate treatment of local as well as nonlocal many body correlation effects of the electrons. We predict a melting temperature of about 1735 and 1640 K without and with core polarization effects, respectively. Both values are within 3% of the experimental melting temperature of 1687 K. In comparison, the commonly used gradient approximation to density functional theory predicts a melting point that is 200 K too low, and hybrid functionals overestimate the melting point by 150 K. We correlate the predicted melting point with the energy difference between cubic diamond and the beta-tin phase of silicon, establishing that this energy difference is an important benchmark for the development of approximate functionals. The current results demonstrate that the RPA can be used to predict accurate finite temperature properties and underlines the excellent predictive properties of the RPA for condensed matter.
doi_str_mv 10.1103/PhysRevLett.121.195701
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2137474856</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2150519092</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-c0f3cea7ea64889877aac1afa559ffbe0b1a3705c9190ea5becd52e91bf54673</originalsourceid><addsrcrecordid>eNpdkEFLw0AQhRdRbK3-hRLw4sHUmWw2m_Wm1aoQUbT3ZbOd2JQ0qdlEyL83pVXE01y-997wMTZGmCACv3pddu6NvhJqmgkGOEElJOABGyJI5UvE8JANATj6CkAO2IlzKwDAIIqP2YBDGMVCxUN2-UxFk5cf3nt-7d1SV5UL745KlzedN2tL2-RVaQpvvqSq7k7ZUWYKR2f7O2Lz2f18-ugnLw9P05vEt1wFjW8h45aMJBOFcaxiKY2xaDIjhMqylCBFwyUIq1ABGZGSXYiAFKaZCCPJR-xiV7upq8-WXKPXubNUFKakqnU6QC5DGcYi6tHzf-iqauv-4y0lQPQDKuipaEfZunKupkxv6nxt6k4j6K1O_Uen7nXqnc4-ON7Xt-maFr-xH3_8GwJucoE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2150519092</pqid></control><display><type>article</type><title>Melting Si: Beyond Density Functional Theory</title><source>American Physical Society Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Dorner, Florian ; Sukurma, Zoran ; Dellago, Christoph ; Kresse, Georg</creator><creatorcontrib>Dorner, Florian ; Sukurma, Zoran ; Dellago, Christoph ; Kresse, Georg</creatorcontrib><description>The melting point of silicon in the cubic diamond phase is calculated using the random phase approximation (RPA). The RPA includes exact exchange as well as an approximate treatment of local as well as nonlocal many body correlation effects of the electrons. We predict a melting temperature of about 1735 and 1640 K without and with core polarization effects, respectively. Both values are within 3% of the experimental melting temperature of 1687 K. In comparison, the commonly used gradient approximation to density functional theory predicts a melting point that is 200 K too low, and hybrid functionals overestimate the melting point by 150 K. We correlate the predicted melting point with the energy difference between cubic diamond and the beta-tin phase of silicon, establishing that this energy difference is an important benchmark for the development of approximate functionals. The current results demonstrate that the RPA can be used to predict accurate finite temperature properties and underlines the excellent predictive properties of the RPA for condensed matter.</description><identifier>ISSN: 0031-9007</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/PhysRevLett.121.195701</identifier><identifier>PMID: 30468598</identifier><language>eng</language><publisher>United States: American Physical Society</publisher><subject>Approximation ; Condensed matter physics ; Density functional theory ; Diamonds ; Mathematical analysis ; Melt temperature ; Melting points ; Silicon</subject><ispartof>Physical review letters, 2018-11, Vol.121 (19), p.195701-195701, Article 195701</ispartof><rights>Copyright American Physical Society Nov 9, 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-c0f3cea7ea64889877aac1afa559ffbe0b1a3705c9190ea5becd52e91bf54673</citedby><cites>FETCH-LOGICAL-c392t-c0f3cea7ea64889877aac1afa559ffbe0b1a3705c9190ea5becd52e91bf54673</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,2863,2864,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30468598$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dorner, Florian</creatorcontrib><creatorcontrib>Sukurma, Zoran</creatorcontrib><creatorcontrib>Dellago, Christoph</creatorcontrib><creatorcontrib>Kresse, Georg</creatorcontrib><title>Melting Si: Beyond Density Functional Theory</title><title>Physical review letters</title><addtitle>Phys Rev Lett</addtitle><description>The melting point of silicon in the cubic diamond phase is calculated using the random phase approximation (RPA). The RPA includes exact exchange as well as an approximate treatment of local as well as nonlocal many body correlation effects of the electrons. We predict a melting temperature of about 1735 and 1640 K without and with core polarization effects, respectively. Both values are within 3% of the experimental melting temperature of 1687 K. In comparison, the commonly used gradient approximation to density functional theory predicts a melting point that is 200 K too low, and hybrid functionals overestimate the melting point by 150 K. We correlate the predicted melting point with the energy difference between cubic diamond and the beta-tin phase of silicon, establishing that this energy difference is an important benchmark for the development of approximate functionals. The current results demonstrate that the RPA can be used to predict accurate finite temperature properties and underlines the excellent predictive properties of the RPA for condensed matter.</description><subject>Approximation</subject><subject>Condensed matter physics</subject><subject>Density functional theory</subject><subject>Diamonds</subject><subject>Mathematical analysis</subject><subject>Melt temperature</subject><subject>Melting points</subject><subject>Silicon</subject><issn>0031-9007</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpdkEFLw0AQhRdRbK3-hRLw4sHUmWw2m_Wm1aoQUbT3ZbOd2JQ0qdlEyL83pVXE01y-997wMTZGmCACv3pddu6NvhJqmgkGOEElJOABGyJI5UvE8JANATj6CkAO2IlzKwDAIIqP2YBDGMVCxUN2-UxFk5cf3nt-7d1SV5UL745KlzedN2tL2-RVaQpvvqSq7k7ZUWYKR2f7O2Lz2f18-ugnLw9P05vEt1wFjW8h45aMJBOFcaxiKY2xaDIjhMqylCBFwyUIq1ABGZGSXYiAFKaZCCPJR-xiV7upq8-WXKPXubNUFKakqnU6QC5DGcYi6tHzf-iqauv-4y0lQPQDKuipaEfZunKupkxv6nxt6k4j6K1O_Uen7nXqnc4-ON7Xt-maFr-xH3_8GwJucoE</recordid><startdate>20181109</startdate><enddate>20181109</enddate><creator>Dorner, Florian</creator><creator>Sukurma, Zoran</creator><creator>Dellago, Christoph</creator><creator>Kresse, Georg</creator><general>American Physical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20181109</creationdate><title>Melting Si: Beyond Density Functional Theory</title><author>Dorner, Florian ; Sukurma, Zoran ; Dellago, Christoph ; Kresse, Georg</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-c0f3cea7ea64889877aac1afa559ffbe0b1a3705c9190ea5becd52e91bf54673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Approximation</topic><topic>Condensed matter physics</topic><topic>Density functional theory</topic><topic>Diamonds</topic><topic>Mathematical analysis</topic><topic>Melt temperature</topic><topic>Melting points</topic><topic>Silicon</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dorner, Florian</creatorcontrib><creatorcontrib>Sukurma, Zoran</creatorcontrib><creatorcontrib>Dellago, Christoph</creatorcontrib><creatorcontrib>Kresse, Georg</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dorner, Florian</au><au>Sukurma, Zoran</au><au>Dellago, Christoph</au><au>Kresse, Georg</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Melting Si: Beyond Density Functional Theory</atitle><jtitle>Physical review letters</jtitle><addtitle>Phys Rev Lett</addtitle><date>2018-11-09</date><risdate>2018</risdate><volume>121</volume><issue>19</issue><spage>195701</spage><epage>195701</epage><pages>195701-195701</pages><artnum>195701</artnum><issn>0031-9007</issn><eissn>1079-7114</eissn><abstract>The melting point of silicon in the cubic diamond phase is calculated using the random phase approximation (RPA). The RPA includes exact exchange as well as an approximate treatment of local as well as nonlocal many body correlation effects of the electrons. We predict a melting temperature of about 1735 and 1640 K without and with core polarization effects, respectively. Both values are within 3% of the experimental melting temperature of 1687 K. In comparison, the commonly used gradient approximation to density functional theory predicts a melting point that is 200 K too low, and hybrid functionals overestimate the melting point by 150 K. We correlate the predicted melting point with the energy difference between cubic diamond and the beta-tin phase of silicon, establishing that this energy difference is an important benchmark for the development of approximate functionals. The current results demonstrate that the RPA can be used to predict accurate finite temperature properties and underlines the excellent predictive properties of the RPA for condensed matter.</abstract><cop>United States</cop><pub>American Physical Society</pub><pmid>30468598</pmid><doi>10.1103/PhysRevLett.121.195701</doi><tpages>1</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0031-9007
ispartof Physical review letters, 2018-11, Vol.121 (19), p.195701-195701, Article 195701
issn 0031-9007
1079-7114
language eng
recordid cdi_proquest_miscellaneous_2137474856
source American Physical Society Journals; EZB-FREE-00999 freely available EZB journals
subjects Approximation
Condensed matter physics
Density functional theory
Diamonds
Mathematical analysis
Melt temperature
Melting points
Silicon
title Melting Si: Beyond Density Functional Theory
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T16%3A30%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Melting%20Si:%20Beyond%20Density%20Functional%20Theory&rft.jtitle=Physical%20review%20letters&rft.au=Dorner,%20Florian&rft.date=2018-11-09&rft.volume=121&rft.issue=19&rft.spage=195701&rft.epage=195701&rft.pages=195701-195701&rft.artnum=195701&rft.issn=0031-9007&rft.eissn=1079-7114&rft_id=info:doi/10.1103/PhysRevLett.121.195701&rft_dat=%3Cproquest_cross%3E2150519092%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2150519092&rft_id=info:pmid/30468598&rfr_iscdi=true