Melting Si: Beyond Density Functional Theory
The melting point of silicon in the cubic diamond phase is calculated using the random phase approximation (RPA). The RPA includes exact exchange as well as an approximate treatment of local as well as nonlocal many body correlation effects of the electrons. We predict a melting temperature of about...
Gespeichert in:
Veröffentlicht in: | Physical review letters 2018-11, Vol.121 (19), p.195701-195701, Article 195701 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 195701 |
---|---|
container_issue | 19 |
container_start_page | 195701 |
container_title | Physical review letters |
container_volume | 121 |
creator | Dorner, Florian Sukurma, Zoran Dellago, Christoph Kresse, Georg |
description | The melting point of silicon in the cubic diamond phase is calculated using the random phase approximation (RPA). The RPA includes exact exchange as well as an approximate treatment of local as well as nonlocal many body correlation effects of the electrons. We predict a melting temperature of about 1735 and 1640 K without and with core polarization effects, respectively. Both values are within 3% of the experimental melting temperature of 1687 K. In comparison, the commonly used gradient approximation to density functional theory predicts a melting point that is 200 K too low, and hybrid functionals overestimate the melting point by 150 K. We correlate the predicted melting point with the energy difference between cubic diamond and the beta-tin phase of silicon, establishing that this energy difference is an important benchmark for the development of approximate functionals. The current results demonstrate that the RPA can be used to predict accurate finite temperature properties and underlines the excellent predictive properties of the RPA for condensed matter. |
doi_str_mv | 10.1103/PhysRevLett.121.195701 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2137474856</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2150519092</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-c0f3cea7ea64889877aac1afa559ffbe0b1a3705c9190ea5becd52e91bf54673</originalsourceid><addsrcrecordid>eNpdkEFLw0AQhRdRbK3-hRLw4sHUmWw2m_Wm1aoQUbT3ZbOd2JQ0qdlEyL83pVXE01y-997wMTZGmCACv3pddu6NvhJqmgkGOEElJOABGyJI5UvE8JANATj6CkAO2IlzKwDAIIqP2YBDGMVCxUN2-UxFk5cf3nt-7d1SV5UL745KlzedN2tL2-RVaQpvvqSq7k7ZUWYKR2f7O2Lz2f18-ugnLw9P05vEt1wFjW8h45aMJBOFcaxiKY2xaDIjhMqylCBFwyUIq1ABGZGSXYiAFKaZCCPJR-xiV7upq8-WXKPXubNUFKakqnU6QC5DGcYi6tHzf-iqauv-4y0lQPQDKuipaEfZunKupkxv6nxt6k4j6K1O_Uen7nXqnc4-ON7Xt-maFr-xH3_8GwJucoE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2150519092</pqid></control><display><type>article</type><title>Melting Si: Beyond Density Functional Theory</title><source>American Physical Society Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Dorner, Florian ; Sukurma, Zoran ; Dellago, Christoph ; Kresse, Georg</creator><creatorcontrib>Dorner, Florian ; Sukurma, Zoran ; Dellago, Christoph ; Kresse, Georg</creatorcontrib><description>The melting point of silicon in the cubic diamond phase is calculated using the random phase approximation (RPA). The RPA includes exact exchange as well as an approximate treatment of local as well as nonlocal many body correlation effects of the electrons. We predict a melting temperature of about 1735 and 1640 K without and with core polarization effects, respectively. Both values are within 3% of the experimental melting temperature of 1687 K. In comparison, the commonly used gradient approximation to density functional theory predicts a melting point that is 200 K too low, and hybrid functionals overestimate the melting point by 150 K. We correlate the predicted melting point with the energy difference between cubic diamond and the beta-tin phase of silicon, establishing that this energy difference is an important benchmark for the development of approximate functionals. The current results demonstrate that the RPA can be used to predict accurate finite temperature properties and underlines the excellent predictive properties of the RPA for condensed matter.</description><identifier>ISSN: 0031-9007</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/PhysRevLett.121.195701</identifier><identifier>PMID: 30468598</identifier><language>eng</language><publisher>United States: American Physical Society</publisher><subject>Approximation ; Condensed matter physics ; Density functional theory ; Diamonds ; Mathematical analysis ; Melt temperature ; Melting points ; Silicon</subject><ispartof>Physical review letters, 2018-11, Vol.121 (19), p.195701-195701, Article 195701</ispartof><rights>Copyright American Physical Society Nov 9, 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-c0f3cea7ea64889877aac1afa559ffbe0b1a3705c9190ea5becd52e91bf54673</citedby><cites>FETCH-LOGICAL-c392t-c0f3cea7ea64889877aac1afa559ffbe0b1a3705c9190ea5becd52e91bf54673</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,2863,2864,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30468598$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dorner, Florian</creatorcontrib><creatorcontrib>Sukurma, Zoran</creatorcontrib><creatorcontrib>Dellago, Christoph</creatorcontrib><creatorcontrib>Kresse, Georg</creatorcontrib><title>Melting Si: Beyond Density Functional Theory</title><title>Physical review letters</title><addtitle>Phys Rev Lett</addtitle><description>The melting point of silicon in the cubic diamond phase is calculated using the random phase approximation (RPA). The RPA includes exact exchange as well as an approximate treatment of local as well as nonlocal many body correlation effects of the electrons. We predict a melting temperature of about 1735 and 1640 K without and with core polarization effects, respectively. Both values are within 3% of the experimental melting temperature of 1687 K. In comparison, the commonly used gradient approximation to density functional theory predicts a melting point that is 200 K too low, and hybrid functionals overestimate the melting point by 150 K. We correlate the predicted melting point with the energy difference between cubic diamond and the beta-tin phase of silicon, establishing that this energy difference is an important benchmark for the development of approximate functionals. The current results demonstrate that the RPA can be used to predict accurate finite temperature properties and underlines the excellent predictive properties of the RPA for condensed matter.</description><subject>Approximation</subject><subject>Condensed matter physics</subject><subject>Density functional theory</subject><subject>Diamonds</subject><subject>Mathematical analysis</subject><subject>Melt temperature</subject><subject>Melting points</subject><subject>Silicon</subject><issn>0031-9007</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpdkEFLw0AQhRdRbK3-hRLw4sHUmWw2m_Wm1aoQUbT3ZbOd2JQ0qdlEyL83pVXE01y-997wMTZGmCACv3pddu6NvhJqmgkGOEElJOABGyJI5UvE8JANATj6CkAO2IlzKwDAIIqP2YBDGMVCxUN2-UxFk5cf3nt-7d1SV5UL745KlzedN2tL2-RVaQpvvqSq7k7ZUWYKR2f7O2Lz2f18-ugnLw9P05vEt1wFjW8h45aMJBOFcaxiKY2xaDIjhMqylCBFwyUIq1ABGZGSXYiAFKaZCCPJR-xiV7upq8-WXKPXubNUFKakqnU6QC5DGcYi6tHzf-iqauv-4y0lQPQDKuipaEfZunKupkxv6nxt6k4j6K1O_Uen7nXqnc4-ON7Xt-maFr-xH3_8GwJucoE</recordid><startdate>20181109</startdate><enddate>20181109</enddate><creator>Dorner, Florian</creator><creator>Sukurma, Zoran</creator><creator>Dellago, Christoph</creator><creator>Kresse, Georg</creator><general>American Physical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20181109</creationdate><title>Melting Si: Beyond Density Functional Theory</title><author>Dorner, Florian ; Sukurma, Zoran ; Dellago, Christoph ; Kresse, Georg</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-c0f3cea7ea64889877aac1afa559ffbe0b1a3705c9190ea5becd52e91bf54673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Approximation</topic><topic>Condensed matter physics</topic><topic>Density functional theory</topic><topic>Diamonds</topic><topic>Mathematical analysis</topic><topic>Melt temperature</topic><topic>Melting points</topic><topic>Silicon</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dorner, Florian</creatorcontrib><creatorcontrib>Sukurma, Zoran</creatorcontrib><creatorcontrib>Dellago, Christoph</creatorcontrib><creatorcontrib>Kresse, Georg</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dorner, Florian</au><au>Sukurma, Zoran</au><au>Dellago, Christoph</au><au>Kresse, Georg</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Melting Si: Beyond Density Functional Theory</atitle><jtitle>Physical review letters</jtitle><addtitle>Phys Rev Lett</addtitle><date>2018-11-09</date><risdate>2018</risdate><volume>121</volume><issue>19</issue><spage>195701</spage><epage>195701</epage><pages>195701-195701</pages><artnum>195701</artnum><issn>0031-9007</issn><eissn>1079-7114</eissn><abstract>The melting point of silicon in the cubic diamond phase is calculated using the random phase approximation (RPA). The RPA includes exact exchange as well as an approximate treatment of local as well as nonlocal many body correlation effects of the electrons. We predict a melting temperature of about 1735 and 1640 K without and with core polarization effects, respectively. Both values are within 3% of the experimental melting temperature of 1687 K. In comparison, the commonly used gradient approximation to density functional theory predicts a melting point that is 200 K too low, and hybrid functionals overestimate the melting point by 150 K. We correlate the predicted melting point with the energy difference between cubic diamond and the beta-tin phase of silicon, establishing that this energy difference is an important benchmark for the development of approximate functionals. The current results demonstrate that the RPA can be used to predict accurate finite temperature properties and underlines the excellent predictive properties of the RPA for condensed matter.</abstract><cop>United States</cop><pub>American Physical Society</pub><pmid>30468598</pmid><doi>10.1103/PhysRevLett.121.195701</doi><tpages>1</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0031-9007 |
ispartof | Physical review letters, 2018-11, Vol.121 (19), p.195701-195701, Article 195701 |
issn | 0031-9007 1079-7114 |
language | eng |
recordid | cdi_proquest_miscellaneous_2137474856 |
source | American Physical Society Journals; EZB-FREE-00999 freely available EZB journals |
subjects | Approximation Condensed matter physics Density functional theory Diamonds Mathematical analysis Melt temperature Melting points Silicon |
title | Melting Si: Beyond Density Functional Theory |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T16%3A30%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Melting%20Si:%20Beyond%20Density%20Functional%20Theory&rft.jtitle=Physical%20review%20letters&rft.au=Dorner,%20Florian&rft.date=2018-11-09&rft.volume=121&rft.issue=19&rft.spage=195701&rft.epage=195701&rft.pages=195701-195701&rft.artnum=195701&rft.issn=0031-9007&rft.eissn=1079-7114&rft_id=info:doi/10.1103/PhysRevLett.121.195701&rft_dat=%3Cproquest_cross%3E2150519092%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2150519092&rft_id=info:pmid/30468598&rfr_iscdi=true |