A hypothesis about the origin of carotenoid lipid droplets in the green algae Dunaliella and Haematococcus
Carotenoids (Car) are lipid-soluble pigments synthesized in plants, algae, bacteria and fungi. Car have strong antioxidative properties and as such are utilized to reduce the danger of different diseases in humans. Two green microalgae are utilized as rich natural sources for Car: Dunaliella salina/...
Gespeichert in:
Veröffentlicht in: | Planta 2019-01, Vol.249 (1), p.31-47 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 47 |
---|---|
container_issue | 1 |
container_start_page | 31 |
container_title | Planta |
container_volume | 249 |
creator | Pick, Uri Zarka, Aliza Boussiba, Sammy Davidi, Lital |
description | Carotenoids (Car) are lipid-soluble pigments synthesized in plants, algae, bacteria and fungi. Car have strong antioxidative properties and as such are utilized to reduce the danger of different diseases in humans. Two green microalgae are utilized as rich natural sources for Car: Dunaliella salina/bardawil accumulates 10 % (w/w) β-carotene (βC), which is also pro-vitamin A, and Haematococcus pluvialis accumulates 4 % (w/w) astaxanthin (Ast), the strongest antioxidant among Car. D. bardawil accumulates βC in plastoglobules within the chloroplast, whereas H. pluvialis deposits Ast in cytoplasmic lipid droplets (CLD). In this review we compare the hypercarotenogenic responses (HCR) in Dunaliella and in Haematococcus and try to outline hypothetical evolutionary pathways for its origin. We propose that a mutation in phytoene synthetase that increased its transcription level in response to high light stress had a pivotal role in the evolution of the HCR. Proteomic analyses indicated that in D. bardawil/salina the HCR evolved from dissociation and amplification of eyespot lipid globules. The more robust HCR in algae that accumulate carotenoids in CLD, such as H. pluvialis, required also acquisition of the capacity to export βC out of the chloroplast and its enzymatic conversion into Ast. |
doi_str_mv | 10.1007/s00425-018-3050-3 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2137472005</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>48701769</jstor_id><sourcerecordid>48701769</sourcerecordid><originalsourceid>FETCH-LOGICAL-c460t-4cafcd3f2d0c1207f22c842f8738591c3e1049607dae67cdfb164e3e2aa877d33</originalsourceid><addsrcrecordid>eNp9kTtv2zAUhYmiQeI6-QEdWhDI0kXp5UMiNQZuWgcIkCWdCZq8cmTIokpKg_99KShJgQ5Z-MD57rmXPIR8ZnDDANT3BCB5WQDThYASCvGBrJgUvOAg9UeyAshnqEV5QT6ldADIolLn5EKAVKBrvSKHW_p8GsL4jKlN1O7CNNJ8oSG2-7anoaHOxjBiH1pPu3bIq49h6HBMNOszuo-IPbXd3iL9MfW2a7HrLLW9p1uLRzsGF5yb0iU5a2yX8OplX5PfP--eNtvi4fHX_eb2oXCygrGQzjbOi4Z7cIyDajh3WvJGK6HLmjmBDGRdgfIWK-V8s2OVRIHcWq2UF2JNvi2-Qwx_JkyjObbJzTP1GKZkOBNKKg5QZvT6P_QQppifsFBQZazOFFsoF0NKERszxPZo48kwMHMQZgnC5CDMHISZh_j64jztjujfKl5_PgN8AVKW-j3Gf63fc_2yFB3SGOKbqdQKmKpq8Rdr-5yS</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2137067209</pqid></control><display><type>article</type><title>A hypothesis about the origin of carotenoid lipid droplets in the green algae Dunaliella and Haematococcus</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Pick, Uri ; Zarka, Aliza ; Boussiba, Sammy ; Davidi, Lital</creator><creatorcontrib>Pick, Uri ; Zarka, Aliza ; Boussiba, Sammy ; Davidi, Lital</creatorcontrib><description>Carotenoids (Car) are lipid-soluble pigments synthesized in plants, algae, bacteria and fungi. Car have strong antioxidative properties and as such are utilized to reduce the danger of different diseases in humans. Two green microalgae are utilized as rich natural sources for Car: Dunaliella salina/bardawil accumulates 10 % (w/w) β-carotene (βC), which is also pro-vitamin A, and Haematococcus pluvialis accumulates 4 % (w/w) astaxanthin (Ast), the strongest antioxidant among Car. D. bardawil accumulates βC in plastoglobules within the chloroplast, whereas H. pluvialis deposits Ast in cytoplasmic lipid droplets (CLD). In this review we compare the hypercarotenogenic responses (HCR) in Dunaliella and in Haematococcus and try to outline hypothetical evolutionary pathways for its origin. We propose that a mutation in phytoene synthetase that increased its transcription level in response to high light stress had a pivotal role in the evolution of the HCR. Proteomic analyses indicated that in D. bardawil/salina the HCR evolved from dissociation and amplification of eyespot lipid globules. The more robust HCR in algae that accumulate carotenoids in CLD, such as H. pluvialis, required also acquisition of the capacity to export βC out of the chloroplast and its enzymatic conversion into Ast.</description><identifier>ISSN: 0032-0935</identifier><identifier>EISSN: 1432-2048</identifier><identifier>DOI: 10.1007/s00425-018-3050-3</identifier><identifier>PMID: 30470898</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Science + Business Media</publisher><subject>Agriculture ; Algae ; Antioxidants ; Aquatic plants ; Astaxanthin ; Biomedical and Life Sciences ; Carotene ; Carotenoids ; Carotenoids - metabolism ; Chlorophyta ; Chlorophyta - metabolism ; Chloroplasts ; Disintegration ; Droplets ; Dunaliella ; Dunaliella bardawil ; Dunaliella salina ; Ecology ; Evolution ; Exports ; Eyespot ; Forestry ; Fungi ; Geranylgeranyl-Diphosphate Geranylgeranyltransferase - metabolism ; Globules ; Haematococcus ; Haematococcus pluvialis ; Hazards ; Life Sciences ; Lipid Droplets - metabolism ; Lipids ; Mutation ; Pigments ; Plant Sciences ; Proteomics ; REVIEW ; Terpenes and Isoprenoids ; Transcription ; Vitamin A ; β-Carotene</subject><ispartof>Planta, 2019-01, Vol.249 (1), p.31-47</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2018</rights><rights>Planta is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c460t-4cafcd3f2d0c1207f22c842f8738591c3e1049607dae67cdfb164e3e2aa877d33</citedby><cites>FETCH-LOGICAL-c460t-4cafcd3f2d0c1207f22c842f8738591c3e1049607dae67cdfb164e3e2aa877d33</cites><orcidid>0000-0001-6776-082X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/48701769$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/48701769$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,27901,27902,41464,42533,51294,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30470898$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pick, Uri</creatorcontrib><creatorcontrib>Zarka, Aliza</creatorcontrib><creatorcontrib>Boussiba, Sammy</creatorcontrib><creatorcontrib>Davidi, Lital</creatorcontrib><title>A hypothesis about the origin of carotenoid lipid droplets in the green algae Dunaliella and Haematococcus</title><title>Planta</title><addtitle>Planta</addtitle><addtitle>Planta</addtitle><description>Carotenoids (Car) are lipid-soluble pigments synthesized in plants, algae, bacteria and fungi. Car have strong antioxidative properties and as such are utilized to reduce the danger of different diseases in humans. Two green microalgae are utilized as rich natural sources for Car: Dunaliella salina/bardawil accumulates 10 % (w/w) β-carotene (βC), which is also pro-vitamin A, and Haematococcus pluvialis accumulates 4 % (w/w) astaxanthin (Ast), the strongest antioxidant among Car. D. bardawil accumulates βC in plastoglobules within the chloroplast, whereas H. pluvialis deposits Ast in cytoplasmic lipid droplets (CLD). In this review we compare the hypercarotenogenic responses (HCR) in Dunaliella and in Haematococcus and try to outline hypothetical evolutionary pathways for its origin. We propose that a mutation in phytoene synthetase that increased its transcription level in response to high light stress had a pivotal role in the evolution of the HCR. Proteomic analyses indicated that in D. bardawil/salina the HCR evolved from dissociation and amplification of eyespot lipid globules. The more robust HCR in algae that accumulate carotenoids in CLD, such as H. pluvialis, required also acquisition of the capacity to export βC out of the chloroplast and its enzymatic conversion into Ast.</description><subject>Agriculture</subject><subject>Algae</subject><subject>Antioxidants</subject><subject>Aquatic plants</subject><subject>Astaxanthin</subject><subject>Biomedical and Life Sciences</subject><subject>Carotene</subject><subject>Carotenoids</subject><subject>Carotenoids - metabolism</subject><subject>Chlorophyta</subject><subject>Chlorophyta - metabolism</subject><subject>Chloroplasts</subject><subject>Disintegration</subject><subject>Droplets</subject><subject>Dunaliella</subject><subject>Dunaliella bardawil</subject><subject>Dunaliella salina</subject><subject>Ecology</subject><subject>Evolution</subject><subject>Exports</subject><subject>Eyespot</subject><subject>Forestry</subject><subject>Fungi</subject><subject>Geranylgeranyl-Diphosphate Geranylgeranyltransferase - metabolism</subject><subject>Globules</subject><subject>Haematococcus</subject><subject>Haematococcus pluvialis</subject><subject>Hazards</subject><subject>Life Sciences</subject><subject>Lipid Droplets - metabolism</subject><subject>Lipids</subject><subject>Mutation</subject><subject>Pigments</subject><subject>Plant Sciences</subject><subject>Proteomics</subject><subject>REVIEW</subject><subject>Terpenes and Isoprenoids</subject><subject>Transcription</subject><subject>Vitamin A</subject><subject>β-Carotene</subject><issn>0032-0935</issn><issn>1432-2048</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kTtv2zAUhYmiQeI6-QEdWhDI0kXp5UMiNQZuWgcIkCWdCZq8cmTIokpKg_99KShJgQ5Z-MD57rmXPIR8ZnDDANT3BCB5WQDThYASCvGBrJgUvOAg9UeyAshnqEV5QT6ldADIolLn5EKAVKBrvSKHW_p8GsL4jKlN1O7CNNJ8oSG2-7anoaHOxjBiH1pPu3bIq49h6HBMNOszuo-IPbXd3iL9MfW2a7HrLLW9p1uLRzsGF5yb0iU5a2yX8OplX5PfP--eNtvi4fHX_eb2oXCygrGQzjbOi4Z7cIyDajh3WvJGK6HLmjmBDGRdgfIWK-V8s2OVRIHcWq2UF2JNvi2-Qwx_JkyjObbJzTP1GKZkOBNKKg5QZvT6P_QQppifsFBQZazOFFsoF0NKERszxPZo48kwMHMQZgnC5CDMHISZh_j64jztjujfKl5_PgN8AVKW-j3Gf63fc_2yFB3SGOKbqdQKmKpq8Rdr-5yS</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>Pick, Uri</creator><creator>Zarka, Aliza</creator><creator>Boussiba, Sammy</creator><creator>Davidi, Lital</creator><general>Springer Science + Business Media</general><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7TM</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-6776-082X</orcidid></search><sort><creationdate>20190101</creationdate><title>A hypothesis about the origin of carotenoid lipid droplets in the green algae Dunaliella and Haematococcus</title><author>Pick, Uri ; Zarka, Aliza ; Boussiba, Sammy ; Davidi, Lital</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c460t-4cafcd3f2d0c1207f22c842f8738591c3e1049607dae67cdfb164e3e2aa877d33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Agriculture</topic><topic>Algae</topic><topic>Antioxidants</topic><topic>Aquatic plants</topic><topic>Astaxanthin</topic><topic>Biomedical and Life Sciences</topic><topic>Carotene</topic><topic>Carotenoids</topic><topic>Carotenoids - metabolism</topic><topic>Chlorophyta</topic><topic>Chlorophyta - metabolism</topic><topic>Chloroplasts</topic><topic>Disintegration</topic><topic>Droplets</topic><topic>Dunaliella</topic><topic>Dunaliella bardawil</topic><topic>Dunaliella salina</topic><topic>Ecology</topic><topic>Evolution</topic><topic>Exports</topic><topic>Eyespot</topic><topic>Forestry</topic><topic>Fungi</topic><topic>Geranylgeranyl-Diphosphate Geranylgeranyltransferase - metabolism</topic><topic>Globules</topic><topic>Haematococcus</topic><topic>Haematococcus pluvialis</topic><topic>Hazards</topic><topic>Life Sciences</topic><topic>Lipid Droplets - metabolism</topic><topic>Lipids</topic><topic>Mutation</topic><topic>Pigments</topic><topic>Plant Sciences</topic><topic>Proteomics</topic><topic>REVIEW</topic><topic>Terpenes and Isoprenoids</topic><topic>Transcription</topic><topic>Vitamin A</topic><topic>β-Carotene</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pick, Uri</creatorcontrib><creatorcontrib>Zarka, Aliza</creatorcontrib><creatorcontrib>Boussiba, Sammy</creatorcontrib><creatorcontrib>Davidi, Lital</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Planta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pick, Uri</au><au>Zarka, Aliza</au><au>Boussiba, Sammy</au><au>Davidi, Lital</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A hypothesis about the origin of carotenoid lipid droplets in the green algae Dunaliella and Haematococcus</atitle><jtitle>Planta</jtitle><stitle>Planta</stitle><addtitle>Planta</addtitle><date>2019-01-01</date><risdate>2019</risdate><volume>249</volume><issue>1</issue><spage>31</spage><epage>47</epage><pages>31-47</pages><issn>0032-0935</issn><eissn>1432-2048</eissn><abstract>Carotenoids (Car) are lipid-soluble pigments synthesized in plants, algae, bacteria and fungi. Car have strong antioxidative properties and as such are utilized to reduce the danger of different diseases in humans. Two green microalgae are utilized as rich natural sources for Car: Dunaliella salina/bardawil accumulates 10 % (w/w) β-carotene (βC), which is also pro-vitamin A, and Haematococcus pluvialis accumulates 4 % (w/w) astaxanthin (Ast), the strongest antioxidant among Car. D. bardawil accumulates βC in plastoglobules within the chloroplast, whereas H. pluvialis deposits Ast in cytoplasmic lipid droplets (CLD). In this review we compare the hypercarotenogenic responses (HCR) in Dunaliella and in Haematococcus and try to outline hypothetical evolutionary pathways for its origin. We propose that a mutation in phytoene synthetase that increased its transcription level in response to high light stress had a pivotal role in the evolution of the HCR. Proteomic analyses indicated that in D. bardawil/salina the HCR evolved from dissociation and amplification of eyespot lipid globules. The more robust HCR in algae that accumulate carotenoids in CLD, such as H. pluvialis, required also acquisition of the capacity to export βC out of the chloroplast and its enzymatic conversion into Ast.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Science + Business Media</pub><pmid>30470898</pmid><doi>10.1007/s00425-018-3050-3</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0001-6776-082X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0032-0935 |
ispartof | Planta, 2019-01, Vol.249 (1), p.31-47 |
issn | 0032-0935 1432-2048 |
language | eng |
recordid | cdi_proquest_miscellaneous_2137472005 |
source | Jstor Complete Legacy; MEDLINE; SpringerLink Journals - AutoHoldings |
subjects | Agriculture Algae Antioxidants Aquatic plants Astaxanthin Biomedical and Life Sciences Carotene Carotenoids Carotenoids - metabolism Chlorophyta Chlorophyta - metabolism Chloroplasts Disintegration Droplets Dunaliella Dunaliella bardawil Dunaliella salina Ecology Evolution Exports Eyespot Forestry Fungi Geranylgeranyl-Diphosphate Geranylgeranyltransferase - metabolism Globules Haematococcus Haematococcus pluvialis Hazards Life Sciences Lipid Droplets - metabolism Lipids Mutation Pigments Plant Sciences Proteomics REVIEW Terpenes and Isoprenoids Transcription Vitamin A β-Carotene |
title | A hypothesis about the origin of carotenoid lipid droplets in the green algae Dunaliella and Haematococcus |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T14%3A41%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20hypothesis%20about%20the%20origin%20of%20carotenoid%20lipid%20droplets%20in%20the%20green%20algae%20Dunaliella%20and%20Haematococcus&rft.jtitle=Planta&rft.au=Pick,%20Uri&rft.date=2019-01-01&rft.volume=249&rft.issue=1&rft.spage=31&rft.epage=47&rft.pages=31-47&rft.issn=0032-0935&rft.eissn=1432-2048&rft_id=info:doi/10.1007/s00425-018-3050-3&rft_dat=%3Cjstor_proqu%3E48701769%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2137067209&rft_id=info:pmid/30470898&rft_jstor_id=48701769&rfr_iscdi=true |