A hypothesis about the origin of carotenoid lipid droplets in the green algae Dunaliella and Haematococcus

Carotenoids (Car) are lipid-soluble pigments synthesized in plants, algae, bacteria and fungi. Car have strong antioxidative properties and as such are utilized to reduce the danger of different diseases in humans. Two green microalgae are utilized as rich natural sources for Car: Dunaliella salina/...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Planta 2019-01, Vol.249 (1), p.31-47
Hauptverfasser: Pick, Uri, Zarka, Aliza, Boussiba, Sammy, Davidi, Lital
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 47
container_issue 1
container_start_page 31
container_title Planta
container_volume 249
creator Pick, Uri
Zarka, Aliza
Boussiba, Sammy
Davidi, Lital
description Carotenoids (Car) are lipid-soluble pigments synthesized in plants, algae, bacteria and fungi. Car have strong antioxidative properties and as such are utilized to reduce the danger of different diseases in humans. Two green microalgae are utilized as rich natural sources for Car: Dunaliella salina/bardawil accumulates 10 % (w/w) β-carotene (βC), which is also pro-vitamin A, and Haematococcus pluvialis accumulates 4 % (w/w) astaxanthin (Ast), the strongest antioxidant among Car. D. bardawil accumulates βC in plastoglobules within the chloroplast, whereas H. pluvialis deposits Ast in cytoplasmic lipid droplets (CLD). In this review we compare the hypercarotenogenic responses (HCR) in Dunaliella and in Haematococcus and try to outline hypothetical evolutionary pathways for its origin. We propose that a mutation in phytoene synthetase that increased its transcription level in response to high light stress had a pivotal role in the evolution of the HCR. Proteomic analyses indicated that in D. bardawil/salina the HCR evolved from dissociation and amplification of eyespot lipid globules. The more robust HCR in algae that accumulate carotenoids in CLD, such as H. pluvialis, required also acquisition of the capacity to export βC out of the chloroplast and its enzymatic conversion into Ast.
doi_str_mv 10.1007/s00425-018-3050-3
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2137472005</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>48701769</jstor_id><sourcerecordid>48701769</sourcerecordid><originalsourceid>FETCH-LOGICAL-c460t-4cafcd3f2d0c1207f22c842f8738591c3e1049607dae67cdfb164e3e2aa877d33</originalsourceid><addsrcrecordid>eNp9kTtv2zAUhYmiQeI6-QEdWhDI0kXp5UMiNQZuWgcIkCWdCZq8cmTIokpKg_99KShJgQ5Z-MD57rmXPIR8ZnDDANT3BCB5WQDThYASCvGBrJgUvOAg9UeyAshnqEV5QT6ldADIolLn5EKAVKBrvSKHW_p8GsL4jKlN1O7CNNJ8oSG2-7anoaHOxjBiH1pPu3bIq49h6HBMNOszuo-IPbXd3iL9MfW2a7HrLLW9p1uLRzsGF5yb0iU5a2yX8OplX5PfP--eNtvi4fHX_eb2oXCygrGQzjbOi4Z7cIyDajh3WvJGK6HLmjmBDGRdgfIWK-V8s2OVRIHcWq2UF2JNvi2-Qwx_JkyjObbJzTP1GKZkOBNKKg5QZvT6P_QQppifsFBQZazOFFsoF0NKERszxPZo48kwMHMQZgnC5CDMHISZh_j64jztjujfKl5_PgN8AVKW-j3Gf63fc_2yFB3SGOKbqdQKmKpq8Rdr-5yS</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2137067209</pqid></control><display><type>article</type><title>A hypothesis about the origin of carotenoid lipid droplets in the green algae Dunaliella and Haematococcus</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Pick, Uri ; Zarka, Aliza ; Boussiba, Sammy ; Davidi, Lital</creator><creatorcontrib>Pick, Uri ; Zarka, Aliza ; Boussiba, Sammy ; Davidi, Lital</creatorcontrib><description>Carotenoids (Car) are lipid-soluble pigments synthesized in plants, algae, bacteria and fungi. Car have strong antioxidative properties and as such are utilized to reduce the danger of different diseases in humans. Two green microalgae are utilized as rich natural sources for Car: Dunaliella salina/bardawil accumulates 10 % (w/w) β-carotene (βC), which is also pro-vitamin A, and Haematococcus pluvialis accumulates 4 % (w/w) astaxanthin (Ast), the strongest antioxidant among Car. D. bardawil accumulates βC in plastoglobules within the chloroplast, whereas H. pluvialis deposits Ast in cytoplasmic lipid droplets (CLD). In this review we compare the hypercarotenogenic responses (HCR) in Dunaliella and in Haematococcus and try to outline hypothetical evolutionary pathways for its origin. We propose that a mutation in phytoene synthetase that increased its transcription level in response to high light stress had a pivotal role in the evolution of the HCR. Proteomic analyses indicated that in D. bardawil/salina the HCR evolved from dissociation and amplification of eyespot lipid globules. The more robust HCR in algae that accumulate carotenoids in CLD, such as H. pluvialis, required also acquisition of the capacity to export βC out of the chloroplast and its enzymatic conversion into Ast.</description><identifier>ISSN: 0032-0935</identifier><identifier>EISSN: 1432-2048</identifier><identifier>DOI: 10.1007/s00425-018-3050-3</identifier><identifier>PMID: 30470898</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Science + Business Media</publisher><subject>Agriculture ; Algae ; Antioxidants ; Aquatic plants ; Astaxanthin ; Biomedical and Life Sciences ; Carotene ; Carotenoids ; Carotenoids - metabolism ; Chlorophyta ; Chlorophyta - metabolism ; Chloroplasts ; Disintegration ; Droplets ; Dunaliella ; Dunaliella bardawil ; Dunaliella salina ; Ecology ; Evolution ; Exports ; Eyespot ; Forestry ; Fungi ; Geranylgeranyl-Diphosphate Geranylgeranyltransferase - metabolism ; Globules ; Haematococcus ; Haematococcus pluvialis ; Hazards ; Life Sciences ; Lipid Droplets - metabolism ; Lipids ; Mutation ; Pigments ; Plant Sciences ; Proteomics ; REVIEW ; Terpenes and Isoprenoids ; Transcription ; Vitamin A ; β-Carotene</subject><ispartof>Planta, 2019-01, Vol.249 (1), p.31-47</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2018</rights><rights>Planta is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c460t-4cafcd3f2d0c1207f22c842f8738591c3e1049607dae67cdfb164e3e2aa877d33</citedby><cites>FETCH-LOGICAL-c460t-4cafcd3f2d0c1207f22c842f8738591c3e1049607dae67cdfb164e3e2aa877d33</cites><orcidid>0000-0001-6776-082X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/48701769$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/48701769$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,27901,27902,41464,42533,51294,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30470898$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pick, Uri</creatorcontrib><creatorcontrib>Zarka, Aliza</creatorcontrib><creatorcontrib>Boussiba, Sammy</creatorcontrib><creatorcontrib>Davidi, Lital</creatorcontrib><title>A hypothesis about the origin of carotenoid lipid droplets in the green algae Dunaliella and Haematococcus</title><title>Planta</title><addtitle>Planta</addtitle><addtitle>Planta</addtitle><description>Carotenoids (Car) are lipid-soluble pigments synthesized in plants, algae, bacteria and fungi. Car have strong antioxidative properties and as such are utilized to reduce the danger of different diseases in humans. Two green microalgae are utilized as rich natural sources for Car: Dunaliella salina/bardawil accumulates 10 % (w/w) β-carotene (βC), which is also pro-vitamin A, and Haematococcus pluvialis accumulates 4 % (w/w) astaxanthin (Ast), the strongest antioxidant among Car. D. bardawil accumulates βC in plastoglobules within the chloroplast, whereas H. pluvialis deposits Ast in cytoplasmic lipid droplets (CLD). In this review we compare the hypercarotenogenic responses (HCR) in Dunaliella and in Haematococcus and try to outline hypothetical evolutionary pathways for its origin. We propose that a mutation in phytoene synthetase that increased its transcription level in response to high light stress had a pivotal role in the evolution of the HCR. Proteomic analyses indicated that in D. bardawil/salina the HCR evolved from dissociation and amplification of eyespot lipid globules. The more robust HCR in algae that accumulate carotenoids in CLD, such as H. pluvialis, required also acquisition of the capacity to export βC out of the chloroplast and its enzymatic conversion into Ast.</description><subject>Agriculture</subject><subject>Algae</subject><subject>Antioxidants</subject><subject>Aquatic plants</subject><subject>Astaxanthin</subject><subject>Biomedical and Life Sciences</subject><subject>Carotene</subject><subject>Carotenoids</subject><subject>Carotenoids - metabolism</subject><subject>Chlorophyta</subject><subject>Chlorophyta - metabolism</subject><subject>Chloroplasts</subject><subject>Disintegration</subject><subject>Droplets</subject><subject>Dunaliella</subject><subject>Dunaliella bardawil</subject><subject>Dunaliella salina</subject><subject>Ecology</subject><subject>Evolution</subject><subject>Exports</subject><subject>Eyespot</subject><subject>Forestry</subject><subject>Fungi</subject><subject>Geranylgeranyl-Diphosphate Geranylgeranyltransferase - metabolism</subject><subject>Globules</subject><subject>Haematococcus</subject><subject>Haematococcus pluvialis</subject><subject>Hazards</subject><subject>Life Sciences</subject><subject>Lipid Droplets - metabolism</subject><subject>Lipids</subject><subject>Mutation</subject><subject>Pigments</subject><subject>Plant Sciences</subject><subject>Proteomics</subject><subject>REVIEW</subject><subject>Terpenes and Isoprenoids</subject><subject>Transcription</subject><subject>Vitamin A</subject><subject>β-Carotene</subject><issn>0032-0935</issn><issn>1432-2048</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kTtv2zAUhYmiQeI6-QEdWhDI0kXp5UMiNQZuWgcIkCWdCZq8cmTIokpKg_99KShJgQ5Z-MD57rmXPIR8ZnDDANT3BCB5WQDThYASCvGBrJgUvOAg9UeyAshnqEV5QT6ldADIolLn5EKAVKBrvSKHW_p8GsL4jKlN1O7CNNJ8oSG2-7anoaHOxjBiH1pPu3bIq49h6HBMNOszuo-IPbXd3iL9MfW2a7HrLLW9p1uLRzsGF5yb0iU5a2yX8OplX5PfP--eNtvi4fHX_eb2oXCygrGQzjbOi4Z7cIyDajh3WvJGK6HLmjmBDGRdgfIWK-V8s2OVRIHcWq2UF2JNvi2-Qwx_JkyjObbJzTP1GKZkOBNKKg5QZvT6P_QQppifsFBQZazOFFsoF0NKERszxPZo48kwMHMQZgnC5CDMHISZh_j64jztjujfKl5_PgN8AVKW-j3Gf63fc_2yFB3SGOKbqdQKmKpq8Rdr-5yS</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>Pick, Uri</creator><creator>Zarka, Aliza</creator><creator>Boussiba, Sammy</creator><creator>Davidi, Lital</creator><general>Springer Science + Business Media</general><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7TM</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-6776-082X</orcidid></search><sort><creationdate>20190101</creationdate><title>A hypothesis about the origin of carotenoid lipid droplets in the green algae Dunaliella and Haematococcus</title><author>Pick, Uri ; Zarka, Aliza ; Boussiba, Sammy ; Davidi, Lital</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c460t-4cafcd3f2d0c1207f22c842f8738591c3e1049607dae67cdfb164e3e2aa877d33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Agriculture</topic><topic>Algae</topic><topic>Antioxidants</topic><topic>Aquatic plants</topic><topic>Astaxanthin</topic><topic>Biomedical and Life Sciences</topic><topic>Carotene</topic><topic>Carotenoids</topic><topic>Carotenoids - metabolism</topic><topic>Chlorophyta</topic><topic>Chlorophyta - metabolism</topic><topic>Chloroplasts</topic><topic>Disintegration</topic><topic>Droplets</topic><topic>Dunaliella</topic><topic>Dunaliella bardawil</topic><topic>Dunaliella salina</topic><topic>Ecology</topic><topic>Evolution</topic><topic>Exports</topic><topic>Eyespot</topic><topic>Forestry</topic><topic>Fungi</topic><topic>Geranylgeranyl-Diphosphate Geranylgeranyltransferase - metabolism</topic><topic>Globules</topic><topic>Haematococcus</topic><topic>Haematococcus pluvialis</topic><topic>Hazards</topic><topic>Life Sciences</topic><topic>Lipid Droplets - metabolism</topic><topic>Lipids</topic><topic>Mutation</topic><topic>Pigments</topic><topic>Plant Sciences</topic><topic>Proteomics</topic><topic>REVIEW</topic><topic>Terpenes and Isoprenoids</topic><topic>Transcription</topic><topic>Vitamin A</topic><topic>β-Carotene</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pick, Uri</creatorcontrib><creatorcontrib>Zarka, Aliza</creatorcontrib><creatorcontrib>Boussiba, Sammy</creatorcontrib><creatorcontrib>Davidi, Lital</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Planta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pick, Uri</au><au>Zarka, Aliza</au><au>Boussiba, Sammy</au><au>Davidi, Lital</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A hypothesis about the origin of carotenoid lipid droplets in the green algae Dunaliella and Haematococcus</atitle><jtitle>Planta</jtitle><stitle>Planta</stitle><addtitle>Planta</addtitle><date>2019-01-01</date><risdate>2019</risdate><volume>249</volume><issue>1</issue><spage>31</spage><epage>47</epage><pages>31-47</pages><issn>0032-0935</issn><eissn>1432-2048</eissn><abstract>Carotenoids (Car) are lipid-soluble pigments synthesized in plants, algae, bacteria and fungi. Car have strong antioxidative properties and as such are utilized to reduce the danger of different diseases in humans. Two green microalgae are utilized as rich natural sources for Car: Dunaliella salina/bardawil accumulates 10 % (w/w) β-carotene (βC), which is also pro-vitamin A, and Haematococcus pluvialis accumulates 4 % (w/w) astaxanthin (Ast), the strongest antioxidant among Car. D. bardawil accumulates βC in plastoglobules within the chloroplast, whereas H. pluvialis deposits Ast in cytoplasmic lipid droplets (CLD). In this review we compare the hypercarotenogenic responses (HCR) in Dunaliella and in Haematococcus and try to outline hypothetical evolutionary pathways for its origin. We propose that a mutation in phytoene synthetase that increased its transcription level in response to high light stress had a pivotal role in the evolution of the HCR. Proteomic analyses indicated that in D. bardawil/salina the HCR evolved from dissociation and amplification of eyespot lipid globules. The more robust HCR in algae that accumulate carotenoids in CLD, such as H. pluvialis, required also acquisition of the capacity to export βC out of the chloroplast and its enzymatic conversion into Ast.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Science + Business Media</pub><pmid>30470898</pmid><doi>10.1007/s00425-018-3050-3</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0001-6776-082X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0032-0935
ispartof Planta, 2019-01, Vol.249 (1), p.31-47
issn 0032-0935
1432-2048
language eng
recordid cdi_proquest_miscellaneous_2137472005
source Jstor Complete Legacy; MEDLINE; SpringerLink Journals - AutoHoldings
subjects Agriculture
Algae
Antioxidants
Aquatic plants
Astaxanthin
Biomedical and Life Sciences
Carotene
Carotenoids
Carotenoids - metabolism
Chlorophyta
Chlorophyta - metabolism
Chloroplasts
Disintegration
Droplets
Dunaliella
Dunaliella bardawil
Dunaliella salina
Ecology
Evolution
Exports
Eyespot
Forestry
Fungi
Geranylgeranyl-Diphosphate Geranylgeranyltransferase - metabolism
Globules
Haematococcus
Haematococcus pluvialis
Hazards
Life Sciences
Lipid Droplets - metabolism
Lipids
Mutation
Pigments
Plant Sciences
Proteomics
REVIEW
Terpenes and Isoprenoids
Transcription
Vitamin A
β-Carotene
title A hypothesis about the origin of carotenoid lipid droplets in the green algae Dunaliella and Haematococcus
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T14%3A41%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20hypothesis%20about%20the%20origin%20of%20carotenoid%20lipid%20droplets%20in%20the%20green%20algae%20Dunaliella%20and%20Haematococcus&rft.jtitle=Planta&rft.au=Pick,%20Uri&rft.date=2019-01-01&rft.volume=249&rft.issue=1&rft.spage=31&rft.epage=47&rft.pages=31-47&rft.issn=0032-0935&rft.eissn=1432-2048&rft_id=info:doi/10.1007/s00425-018-3050-3&rft_dat=%3Cjstor_proqu%3E48701769%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2137067209&rft_id=info:pmid/30470898&rft_jstor_id=48701769&rfr_iscdi=true