Multicascade-linked synthetic wavelength digital holography using an optical-comb-referenced frequency synthesizer

Digital holography (DH) is a promising method for non-contact surface topography because the reconstructed phase image can visualize the nanometer unevenness in a sample. However, the axial range of this method is limited to the range of the optical wavelength due to the phase wrapping ambiguity. Al...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Opt.express 2018-10, Vol.26 (20), p.26292-26306
Hauptverfasser: Yamagiwa, Masatomo, Minamikawa, Takeo, Trovato, Clément, Ogawa, Takayuki, Ibrahim, Dahi Ghareab Abdelsalam, Kawahito, Yusuke, Oe, Ryo, Shibuya, Kyuki, Mizuno, Takahiko, Abraham, Emmanuel, Mizutani, Yasuhiro, Iwata, Tetsuo, Yamamoto, Hirotsugu, Minoshima, Kaoru, Yasui, Takeshi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 26306
container_issue 20
container_start_page 26292
container_title Opt.express
container_volume 26
creator Yamagiwa, Masatomo
Minamikawa, Takeo
Trovato, Clément
Ogawa, Takayuki
Ibrahim, Dahi Ghareab Abdelsalam
Kawahito, Yusuke
Oe, Ryo
Shibuya, Kyuki
Mizuno, Takahiko
Abraham, Emmanuel
Mizutani, Yasuhiro
Iwata, Tetsuo
Yamamoto, Hirotsugu
Minoshima, Kaoru
Yasui, Takeshi
description Digital holography (DH) is a promising method for non-contact surface topography because the reconstructed phase image can visualize the nanometer unevenness in a sample. However, the axial range of this method is limited to the range of the optical wavelength due to the phase wrapping ambiguity. Although the use of two different wavelengths of light and the resulting synthetic wavelength, i.e., synthetic wavelength DH, can expand the axial range up to several hundreds of millimeters, its axial precision does not reach sub-micrometer. In this article, we constructed a tunable external cavity laser diode phase-locked to an optical frequency comb, namely, an optical-comb-referenced frequency synthesizer, enabling us to generate multiple synthetic wavelengths within the range of 32 µm to 1.20 m. A multiple cascade link of the phase images among an optical wavelength ( = 1.520 µm) and 5 different synthetic wavelengths ( = 32.39 µm, 99.98 µm, 400.0 µm, 1003 µm, and 4021 µm) enables the shape measurement of a reflective millimeter-sized stepped surface with the axial resolution of 34 nm. The axial dynamic range, defined as the ratio of the axial range ( = 2.0 mm) to the axial resolution ( = 34 nm), achieves 5.9 × 10 , which is larger than that of previous synthetic wavelength DH. Such a wide axial dynamic range capability will further expand the application field of DH for large objects with meter dimensions.
doi_str_mv 10.1364/OE.26.026292
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_proquest_miscellaneous_2137467821</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2137467821</sourcerecordid><originalsourceid>FETCH-LOGICAL-c403t-a84551adb7a1778dcc68c6f434944d512a61ebb746ce01c26a73e4f54be5a3553</originalsourceid><addsrcrecordid>eNpNkU1P4zAQhq0ViEKX255RjiCRrr9iJ0dUlQ-pq152z9bEmTQGNyl2Aur-elK1IE4zGj16ZkYvIb8YnTGh5O_VYsbVjHLFC_6DnDNayFTSXJ986yfkIsZnSpnUhT4jE0GlKjQrzkn4M_jeWYgWKky9a1-wSuKu7Rscx8k7vKHHdt03SeXWrgefNJ3v1gG2zS4ZomvXCbRJt907fGq7TZkGrDFga0dRHfB1GNvdURndfww_yWkNPuLlsU7Jv_vF3_ljulw9PM3vlqmVVPQp5DLLGFSlBqZ1XlmrcqtqKWQhZZUxDophWWqpLFJmuQItUNaZLDEDkWViSm4O3ga82Qa3gbAzHTjzeLc0-xlluWZKsDc2stcHdhu68eLYm42LFr2HFrshGs7EuEjnfI_eHlAbuhjHZ7_cjJp9Ima1MFyZQyIjfnU0D-UGqy_4MwLxAaGIh_8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2137467821</pqid></control><display><type>article</type><title>Multicascade-linked synthetic wavelength digital holography using an optical-comb-referenced frequency synthesizer</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Yamagiwa, Masatomo ; Minamikawa, Takeo ; Trovato, Clément ; Ogawa, Takayuki ; Ibrahim, Dahi Ghareab Abdelsalam ; Kawahito, Yusuke ; Oe, Ryo ; Shibuya, Kyuki ; Mizuno, Takahiko ; Abraham, Emmanuel ; Mizutani, Yasuhiro ; Iwata, Tetsuo ; Yamamoto, Hirotsugu ; Minoshima, Kaoru ; Yasui, Takeshi</creator><creatorcontrib>Yamagiwa, Masatomo ; Minamikawa, Takeo ; Trovato, Clément ; Ogawa, Takayuki ; Ibrahim, Dahi Ghareab Abdelsalam ; Kawahito, Yusuke ; Oe, Ryo ; Shibuya, Kyuki ; Mizuno, Takahiko ; Abraham, Emmanuel ; Mizutani, Yasuhiro ; Iwata, Tetsuo ; Yamamoto, Hirotsugu ; Minoshima, Kaoru ; Yasui, Takeshi</creatorcontrib><description>Digital holography (DH) is a promising method for non-contact surface topography because the reconstructed phase image can visualize the nanometer unevenness in a sample. However, the axial range of this method is limited to the range of the optical wavelength due to the phase wrapping ambiguity. Although the use of two different wavelengths of light and the resulting synthetic wavelength, i.e., synthetic wavelength DH, can expand the axial range up to several hundreds of millimeters, its axial precision does not reach sub-micrometer. In this article, we constructed a tunable external cavity laser diode phase-locked to an optical frequency comb, namely, an optical-comb-referenced frequency synthesizer, enabling us to generate multiple synthetic wavelengths within the range of 32 µm to 1.20 m. A multiple cascade link of the phase images among an optical wavelength ( = 1.520 µm) and 5 different synthetic wavelengths ( = 32.39 µm, 99.98 µm, 400.0 µm, 1003 µm, and 4021 µm) enables the shape measurement of a reflective millimeter-sized stepped surface with the axial resolution of 34 nm. The axial dynamic range, defined as the ratio of the axial range ( = 2.0 mm) to the axial resolution ( = 34 nm), achieves 5.9 × 10 , which is larger than that of previous synthetic wavelength DH. Such a wide axial dynamic range capability will further expand the application field of DH for large objects with meter dimensions.</description><identifier>ISSN: 1094-4087</identifier><identifier>EISSN: 1094-4087</identifier><identifier>DOI: 10.1364/OE.26.026292</identifier><identifier>PMID: 30469719</identifier><language>eng</language><publisher>United States</publisher><subject>General Physics ; Instrumentation and Detectors ; Physics</subject><ispartof>Opt.express, 2018-10, Vol.26 (20), p.26292-26306</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c403t-a84551adb7a1778dcc68c6f434944d512a61ebb746ce01c26a73e4f54be5a3553</citedby><cites>FETCH-LOGICAL-c403t-a84551adb7a1778dcc68c6f434944d512a61ebb746ce01c26a73e4f54be5a3553</cites><orcidid>0000-0001-7742-6155 ; 0000-0003-3528-7163 ; 0000-0003-1301-1406</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,860,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30469719$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-01871631$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Yamagiwa, Masatomo</creatorcontrib><creatorcontrib>Minamikawa, Takeo</creatorcontrib><creatorcontrib>Trovato, Clément</creatorcontrib><creatorcontrib>Ogawa, Takayuki</creatorcontrib><creatorcontrib>Ibrahim, Dahi Ghareab Abdelsalam</creatorcontrib><creatorcontrib>Kawahito, Yusuke</creatorcontrib><creatorcontrib>Oe, Ryo</creatorcontrib><creatorcontrib>Shibuya, Kyuki</creatorcontrib><creatorcontrib>Mizuno, Takahiko</creatorcontrib><creatorcontrib>Abraham, Emmanuel</creatorcontrib><creatorcontrib>Mizutani, Yasuhiro</creatorcontrib><creatorcontrib>Iwata, Tetsuo</creatorcontrib><creatorcontrib>Yamamoto, Hirotsugu</creatorcontrib><creatorcontrib>Minoshima, Kaoru</creatorcontrib><creatorcontrib>Yasui, Takeshi</creatorcontrib><title>Multicascade-linked synthetic wavelength digital holography using an optical-comb-referenced frequency synthesizer</title><title>Opt.express</title><addtitle>Opt Express</addtitle><description>Digital holography (DH) is a promising method for non-contact surface topography because the reconstructed phase image can visualize the nanometer unevenness in a sample. However, the axial range of this method is limited to the range of the optical wavelength due to the phase wrapping ambiguity. Although the use of two different wavelengths of light and the resulting synthetic wavelength, i.e., synthetic wavelength DH, can expand the axial range up to several hundreds of millimeters, its axial precision does not reach sub-micrometer. In this article, we constructed a tunable external cavity laser diode phase-locked to an optical frequency comb, namely, an optical-comb-referenced frequency synthesizer, enabling us to generate multiple synthetic wavelengths within the range of 32 µm to 1.20 m. A multiple cascade link of the phase images among an optical wavelength ( = 1.520 µm) and 5 different synthetic wavelengths ( = 32.39 µm, 99.98 µm, 400.0 µm, 1003 µm, and 4021 µm) enables the shape measurement of a reflective millimeter-sized stepped surface with the axial resolution of 34 nm. The axial dynamic range, defined as the ratio of the axial range ( = 2.0 mm) to the axial resolution ( = 34 nm), achieves 5.9 × 10 , which is larger than that of previous synthetic wavelength DH. Such a wide axial dynamic range capability will further expand the application field of DH for large objects with meter dimensions.</description><subject>General Physics</subject><subject>Instrumentation and Detectors</subject><subject>Physics</subject><issn>1094-4087</issn><issn>1094-4087</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpNkU1P4zAQhq0ViEKX255RjiCRrr9iJ0dUlQ-pq152z9bEmTQGNyl2Aur-elK1IE4zGj16ZkYvIb8YnTGh5O_VYsbVjHLFC_6DnDNayFTSXJ986yfkIsZnSpnUhT4jE0GlKjQrzkn4M_jeWYgWKky9a1-wSuKu7Rscx8k7vKHHdt03SeXWrgefNJ3v1gG2zS4ZomvXCbRJt907fGq7TZkGrDFga0dRHfB1GNvdURndfww_yWkNPuLlsU7Jv_vF3_ljulw9PM3vlqmVVPQp5DLLGFSlBqZ1XlmrcqtqKWQhZZUxDophWWqpLFJmuQItUNaZLDEDkWViSm4O3ga82Qa3gbAzHTjzeLc0-xlluWZKsDc2stcHdhu68eLYm42LFr2HFrshGs7EuEjnfI_eHlAbuhjHZ7_cjJp9Ima1MFyZQyIjfnU0D-UGqy_4MwLxAaGIh_8</recordid><startdate>20181001</startdate><enddate>20181001</enddate><creator>Yamagiwa, Masatomo</creator><creator>Minamikawa, Takeo</creator><creator>Trovato, Clément</creator><creator>Ogawa, Takayuki</creator><creator>Ibrahim, Dahi Ghareab Abdelsalam</creator><creator>Kawahito, Yusuke</creator><creator>Oe, Ryo</creator><creator>Shibuya, Kyuki</creator><creator>Mizuno, Takahiko</creator><creator>Abraham, Emmanuel</creator><creator>Mizutani, Yasuhiro</creator><creator>Iwata, Tetsuo</creator><creator>Yamamoto, Hirotsugu</creator><creator>Minoshima, Kaoru</creator><creator>Yasui, Takeshi</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-7742-6155</orcidid><orcidid>https://orcid.org/0000-0003-3528-7163</orcidid><orcidid>https://orcid.org/0000-0003-1301-1406</orcidid></search><sort><creationdate>20181001</creationdate><title>Multicascade-linked synthetic wavelength digital holography using an optical-comb-referenced frequency synthesizer</title><author>Yamagiwa, Masatomo ; Minamikawa, Takeo ; Trovato, Clément ; Ogawa, Takayuki ; Ibrahim, Dahi Ghareab Abdelsalam ; Kawahito, Yusuke ; Oe, Ryo ; Shibuya, Kyuki ; Mizuno, Takahiko ; Abraham, Emmanuel ; Mizutani, Yasuhiro ; Iwata, Tetsuo ; Yamamoto, Hirotsugu ; Minoshima, Kaoru ; Yasui, Takeshi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c403t-a84551adb7a1778dcc68c6f434944d512a61ebb746ce01c26a73e4f54be5a3553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>General Physics</topic><topic>Instrumentation and Detectors</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yamagiwa, Masatomo</creatorcontrib><creatorcontrib>Minamikawa, Takeo</creatorcontrib><creatorcontrib>Trovato, Clément</creatorcontrib><creatorcontrib>Ogawa, Takayuki</creatorcontrib><creatorcontrib>Ibrahim, Dahi Ghareab Abdelsalam</creatorcontrib><creatorcontrib>Kawahito, Yusuke</creatorcontrib><creatorcontrib>Oe, Ryo</creatorcontrib><creatorcontrib>Shibuya, Kyuki</creatorcontrib><creatorcontrib>Mizuno, Takahiko</creatorcontrib><creatorcontrib>Abraham, Emmanuel</creatorcontrib><creatorcontrib>Mizutani, Yasuhiro</creatorcontrib><creatorcontrib>Iwata, Tetsuo</creatorcontrib><creatorcontrib>Yamamoto, Hirotsugu</creatorcontrib><creatorcontrib>Minoshima, Kaoru</creatorcontrib><creatorcontrib>Yasui, Takeshi</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Opt.express</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yamagiwa, Masatomo</au><au>Minamikawa, Takeo</au><au>Trovato, Clément</au><au>Ogawa, Takayuki</au><au>Ibrahim, Dahi Ghareab Abdelsalam</au><au>Kawahito, Yusuke</au><au>Oe, Ryo</au><au>Shibuya, Kyuki</au><au>Mizuno, Takahiko</au><au>Abraham, Emmanuel</au><au>Mizutani, Yasuhiro</au><au>Iwata, Tetsuo</au><au>Yamamoto, Hirotsugu</au><au>Minoshima, Kaoru</au><au>Yasui, Takeshi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multicascade-linked synthetic wavelength digital holography using an optical-comb-referenced frequency synthesizer</atitle><jtitle>Opt.express</jtitle><addtitle>Opt Express</addtitle><date>2018-10-01</date><risdate>2018</risdate><volume>26</volume><issue>20</issue><spage>26292</spage><epage>26306</epage><pages>26292-26306</pages><issn>1094-4087</issn><eissn>1094-4087</eissn><abstract>Digital holography (DH) is a promising method for non-contact surface topography because the reconstructed phase image can visualize the nanometer unevenness in a sample. However, the axial range of this method is limited to the range of the optical wavelength due to the phase wrapping ambiguity. Although the use of two different wavelengths of light and the resulting synthetic wavelength, i.e., synthetic wavelength DH, can expand the axial range up to several hundreds of millimeters, its axial precision does not reach sub-micrometer. In this article, we constructed a tunable external cavity laser diode phase-locked to an optical frequency comb, namely, an optical-comb-referenced frequency synthesizer, enabling us to generate multiple synthetic wavelengths within the range of 32 µm to 1.20 m. A multiple cascade link of the phase images among an optical wavelength ( = 1.520 µm) and 5 different synthetic wavelengths ( = 32.39 µm, 99.98 µm, 400.0 µm, 1003 µm, and 4021 µm) enables the shape measurement of a reflective millimeter-sized stepped surface with the axial resolution of 34 nm. The axial dynamic range, defined as the ratio of the axial range ( = 2.0 mm) to the axial resolution ( = 34 nm), achieves 5.9 × 10 , which is larger than that of previous synthetic wavelength DH. Such a wide axial dynamic range capability will further expand the application field of DH for large objects with meter dimensions.</abstract><cop>United States</cop><pmid>30469719</pmid><doi>10.1364/OE.26.026292</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-7742-6155</orcidid><orcidid>https://orcid.org/0000-0003-3528-7163</orcidid><orcidid>https://orcid.org/0000-0003-1301-1406</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1094-4087
ispartof Opt.express, 2018-10, Vol.26 (20), p.26292-26306
issn 1094-4087
1094-4087
language eng
recordid cdi_proquest_miscellaneous_2137467821
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
subjects General Physics
Instrumentation and Detectors
Physics
title Multicascade-linked synthetic wavelength digital holography using an optical-comb-referenced frequency synthesizer
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T00%3A02%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multicascade-linked%20synthetic%20wavelength%20digital%20holography%20using%20an%20optical-comb-referenced%20frequency%20synthesizer&rft.jtitle=Opt.express&rft.au=Yamagiwa,%20Masatomo&rft.date=2018-10-01&rft.volume=26&rft.issue=20&rft.spage=26292&rft.epage=26306&rft.pages=26292-26306&rft.issn=1094-4087&rft.eissn=1094-4087&rft_id=info:doi/10.1364/OE.26.026292&rft_dat=%3Cproquest_hal_p%3E2137467821%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2137467821&rft_id=info:pmid/30469719&rfr_iscdi=true