Quantification of the contribution of equatorial Kelvin waves to the QBO wind reversal in the stratosphere

Both global scale waves (e.g., Kelvin, equatorial Rossby, or Rossby‐gravity waves) and mesoscale gravity waves contribute to the wind reversals of the quasi biennial oscillation (QBO). The relative contributions of the different wave types are highly uncertain. In our work we quantify the contributi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geophysical research letters 2009-11, Vol.36 (21), p.np-n/a
Hauptverfasser: Ern, M., Preusse, P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 21
container_start_page np
container_title Geophysical research letters
container_volume 36
creator Ern, M.
Preusse, P.
description Both global scale waves (e.g., Kelvin, equatorial Rossby, or Rossby‐gravity waves) and mesoscale gravity waves contribute to the wind reversals of the quasi biennial oscillation (QBO). The relative contributions of the different wave types are highly uncertain. In our work we quantify the contribution of equatorial Kelvin waves to the reversal from stratospheric easterlies to westerlies averaged over two QBO cycles in the period 2002–2006. Our analysis is based on longitude‐time spectra of temperatures measured by the SABER satellite instrument, as well as temperatures from ECMWF operational analyses. Kelvin waves of zonal wavenumber 1–6 and periods longer than 2.5 days are covered. It is found that the contribution of Kelvin waves is about 30–50% of the observed wind reversal and only 20–35% of the expected total wave forcing. The larger part of the wave forcing therefore has to be contributed by other waves, likely mesoscale gravity waves.
doi_str_mv 10.1029/2009GL040493
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_21371177</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1770332007</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5747-fd7d24ed58cedd0c10a22c6e82348c636ede2d60c23874aa77303b15d5b930043</originalsourceid><addsrcrecordid>eNqNkcFu1DAQhi0EEsvCjQeIkEAcCIzHjp0caYEUEVEVFXG0vM5E9ZImWzvZpW-Pt1sqxKHiNNbM9__jmWHsOYe3HLB6hwBV3YAEWYkHbMErKfMSQD9ki1RJb9TqMXsS4xoABAi-YOuz2Q6T77yzkx-HbOyy6YIyNw5T8Kv5T46uZjuNwds--0L91g_Zzm4pZtN4g58dnWY7P7RZoC2FmKhE7AtxCkkXNxcU6Cl71Nk-0rPbuGTfP308Pz7Jm9P68_H7JneFljrvWt2ipLYoHbUtOA4W0SkqUcjSKaGoJWwVOBSlltZqnSZZ8aItVpUAkGLJXh18N2G8milO5tJHR31vBxrnaJALzXmSLdnre8HEgBBpqf-BFlhVgCXft3_xD7oe5zCkiY0uVAmqQkzQmwPkwhhjoM5sgr-04dpwMPtbmr9vmfCXt542Ott3wQ7OxzsNIkJZFvtv4oHb-Z6u7_U09bcGlbxZQ34Q-TjRrzuRDT-N0kIX5sfX2nwoTupz0aBR4jdAVrp9</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>756806922</pqid></control><display><type>article</type><title>Quantification of the contribution of equatorial Kelvin waves to the QBO wind reversal in the stratosphere</title><source>Access via Wiley Online Library</source><source>Wiley-Blackwell AGU Digital Library</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Wiley Online Library (Open Access Collection)</source><creator>Ern, M. ; Preusse, P.</creator><creatorcontrib>Ern, M. ; Preusse, P.</creatorcontrib><description>Both global scale waves (e.g., Kelvin, equatorial Rossby, or Rossby‐gravity waves) and mesoscale gravity waves contribute to the wind reversals of the quasi biennial oscillation (QBO). The relative contributions of the different wave types are highly uncertain. In our work we quantify the contribution of equatorial Kelvin waves to the reversal from stratospheric easterlies to westerlies averaged over two QBO cycles in the period 2002–2006. Our analysis is based on longitude‐time spectra of temperatures measured by the SABER satellite instrument, as well as temperatures from ECMWF operational analyses. Kelvin waves of zonal wavenumber 1–6 and periods longer than 2.5 days are covered. It is found that the contribution of Kelvin waves is about 30–50% of the observed wind reversal and only 20–35% of the expected total wave forcing. The larger part of the wave forcing therefore has to be contributed by other waves, likely mesoscale gravity waves.</description><identifier>ISSN: 0094-8276</identifier><identifier>EISSN: 1944-8007</identifier><identifier>DOI: 10.1029/2009GL040493</identifier><identifier>CODEN: GPRLAJ</identifier><language>eng</language><publisher>Washington, DC: Blackwell Publishing Ltd</publisher><subject>Atmospheric circulation ; Atmospheric sciences ; Earth sciences ; Earth, ocean, space ; Equatorial regions ; Exact sciences and technology ; Fourier analysis ; General circulation models ; Geophysics ; Gravity waves ; Kelvin wave ; Kelvin waves ; Mathematics ; Oscillations ; QBO ; Remote sensing ; Spectra ; Stratosphere ; Wavenumber ; Wind ; wind acceleration</subject><ispartof>Geophysical research letters, 2009-11, Vol.36 (21), p.np-n/a</ispartof><rights>Copyright 2009 by the American Geophysical Union.</rights><rights>2015 INIST-CNRS</rights><rights>Copyright 2009 by American Geophysical Union</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5747-fd7d24ed58cedd0c10a22c6e82348c636ede2d60c23874aa77303b15d5b930043</citedby><cites>FETCH-LOGICAL-c5747-fd7d24ed58cedd0c10a22c6e82348c636ede2d60c23874aa77303b15d5b930043</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2009GL040493$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2009GL040493$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,782,786,1419,1435,11523,27933,27934,45583,45584,46418,46477,46842,46901</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22208857$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Ern, M.</creatorcontrib><creatorcontrib>Preusse, P.</creatorcontrib><title>Quantification of the contribution of equatorial Kelvin waves to the QBO wind reversal in the stratosphere</title><title>Geophysical research letters</title><addtitle>Geophys. Res. Lett</addtitle><description>Both global scale waves (e.g., Kelvin, equatorial Rossby, or Rossby‐gravity waves) and mesoscale gravity waves contribute to the wind reversals of the quasi biennial oscillation (QBO). The relative contributions of the different wave types are highly uncertain. In our work we quantify the contribution of equatorial Kelvin waves to the reversal from stratospheric easterlies to westerlies averaged over two QBO cycles in the period 2002–2006. Our analysis is based on longitude‐time spectra of temperatures measured by the SABER satellite instrument, as well as temperatures from ECMWF operational analyses. Kelvin waves of zonal wavenumber 1–6 and periods longer than 2.5 days are covered. It is found that the contribution of Kelvin waves is about 30–50% of the observed wind reversal and only 20–35% of the expected total wave forcing. The larger part of the wave forcing therefore has to be contributed by other waves, likely mesoscale gravity waves.</description><subject>Atmospheric circulation</subject><subject>Atmospheric sciences</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Equatorial regions</subject><subject>Exact sciences and technology</subject><subject>Fourier analysis</subject><subject>General circulation models</subject><subject>Geophysics</subject><subject>Gravity waves</subject><subject>Kelvin wave</subject><subject>Kelvin waves</subject><subject>Mathematics</subject><subject>Oscillations</subject><subject>QBO</subject><subject>Remote sensing</subject><subject>Spectra</subject><subject>Stratosphere</subject><subject>Wavenumber</subject><subject>Wind</subject><subject>wind acceleration</subject><issn>0094-8276</issn><issn>1944-8007</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqNkcFu1DAQhi0EEsvCjQeIkEAcCIzHjp0caYEUEVEVFXG0vM5E9ZImWzvZpW-Pt1sqxKHiNNbM9__jmWHsOYe3HLB6hwBV3YAEWYkHbMErKfMSQD9ki1RJb9TqMXsS4xoABAi-YOuz2Q6T77yzkx-HbOyy6YIyNw5T8Kv5T46uZjuNwds--0L91g_Zzm4pZtN4g58dnWY7P7RZoC2FmKhE7AtxCkkXNxcU6Cl71Nk-0rPbuGTfP308Pz7Jm9P68_H7JneFljrvWt2ipLYoHbUtOA4W0SkqUcjSKaGoJWwVOBSlltZqnSZZ8aItVpUAkGLJXh18N2G8milO5tJHR31vBxrnaJALzXmSLdnre8HEgBBpqf-BFlhVgCXft3_xD7oe5zCkiY0uVAmqQkzQmwPkwhhjoM5sgr-04dpwMPtbmr9vmfCXt542Ott3wQ7OxzsNIkJZFvtv4oHb-Z6u7_U09bcGlbxZQ34Q-TjRrzuRDT-N0kIX5sfX2nwoTupz0aBR4jdAVrp9</recordid><startdate>200911</startdate><enddate>200911</enddate><creator>Ern, M.</creator><creator>Preusse, P.</creator><general>Blackwell Publishing Ltd</general><general>American Geophysical Union</general><general>John Wiley &amp; Sons, Inc</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7TN</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope></search><sort><creationdate>200911</creationdate><title>Quantification of the contribution of equatorial Kelvin waves to the QBO wind reversal in the stratosphere</title><author>Ern, M. ; Preusse, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5747-fd7d24ed58cedd0c10a22c6e82348c636ede2d60c23874aa77303b15d5b930043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Atmospheric circulation</topic><topic>Atmospheric sciences</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Equatorial regions</topic><topic>Exact sciences and technology</topic><topic>Fourier analysis</topic><topic>General circulation models</topic><topic>Geophysics</topic><topic>Gravity waves</topic><topic>Kelvin wave</topic><topic>Kelvin waves</topic><topic>Mathematics</topic><topic>Oscillations</topic><topic>QBO</topic><topic>Remote sensing</topic><topic>Spectra</topic><topic>Stratosphere</topic><topic>Wavenumber</topic><topic>Wind</topic><topic>wind acceleration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ern, M.</creatorcontrib><creatorcontrib>Preusse, P.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Geophysical research letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ern, M.</au><au>Preusse, P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantification of the contribution of equatorial Kelvin waves to the QBO wind reversal in the stratosphere</atitle><jtitle>Geophysical research letters</jtitle><addtitle>Geophys. Res. Lett</addtitle><date>2009-11</date><risdate>2009</risdate><volume>36</volume><issue>21</issue><spage>np</spage><epage>n/a</epage><pages>np-n/a</pages><issn>0094-8276</issn><eissn>1944-8007</eissn><coden>GPRLAJ</coden><abstract>Both global scale waves (e.g., Kelvin, equatorial Rossby, or Rossby‐gravity waves) and mesoscale gravity waves contribute to the wind reversals of the quasi biennial oscillation (QBO). The relative contributions of the different wave types are highly uncertain. In our work we quantify the contribution of equatorial Kelvin waves to the reversal from stratospheric easterlies to westerlies averaged over two QBO cycles in the period 2002–2006. Our analysis is based on longitude‐time spectra of temperatures measured by the SABER satellite instrument, as well as temperatures from ECMWF operational analyses. Kelvin waves of zonal wavenumber 1–6 and periods longer than 2.5 days are covered. It is found that the contribution of Kelvin waves is about 30–50% of the observed wind reversal and only 20–35% of the expected total wave forcing. The larger part of the wave forcing therefore has to be contributed by other waves, likely mesoscale gravity waves.</abstract><cop>Washington, DC</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2009GL040493</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0094-8276
ispartof Geophysical research letters, 2009-11, Vol.36 (21), p.np-n/a
issn 0094-8276
1944-8007
language eng
recordid cdi_proquest_miscellaneous_21371177
source Access via Wiley Online Library; Wiley-Blackwell AGU Digital Library; EZB-FREE-00999 freely available EZB journals; Wiley Online Library (Open Access Collection)
subjects Atmospheric circulation
Atmospheric sciences
Earth sciences
Earth, ocean, space
Equatorial regions
Exact sciences and technology
Fourier analysis
General circulation models
Geophysics
Gravity waves
Kelvin wave
Kelvin waves
Mathematics
Oscillations
QBO
Remote sensing
Spectra
Stratosphere
Wavenumber
Wind
wind acceleration
title Quantification of the contribution of equatorial Kelvin waves to the QBO wind reversal in the stratosphere
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-03T12%3A46%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantification%20of%20the%20contribution%20of%20equatorial%20Kelvin%20waves%20to%20the%20QBO%20wind%20reversal%20in%20the%20stratosphere&rft.jtitle=Geophysical%20research%20letters&rft.au=Ern,%20M.&rft.date=2009-11&rft.volume=36&rft.issue=21&rft.spage=np&rft.epage=n/a&rft.pages=np-n/a&rft.issn=0094-8276&rft.eissn=1944-8007&rft.coden=GPRLAJ&rft_id=info:doi/10.1029/2009GL040493&rft_dat=%3Cproquest_cross%3E1770332007%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=756806922&rft_id=info:pmid/&rfr_iscdi=true