Evidence for phase transition in nerve fibers, cells and synapses

By examining rapid changes in the volume and temperature during excitation of a large number of excitable cells and tissues, we have shown that the excitation process is invariably accompanied by swelling and heat production in the superficial protoplasmic layer. By comparing the behavior of a model...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ferroelectrics 1999-01, Vol.220 (1), p.305-316
1. Verfasser: Tasaki, I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 316
container_issue 1
container_start_page 305
container_title Ferroelectrics
container_volume 220
creator Tasaki, I.
description By examining rapid changes in the volume and temperature during excitation of a large number of excitable cells and tissues, we have shown that the excitation process is invariably accompanied by swelling and heat production in the superficial protoplasmic layer. By comparing the behavior of a model system (synthetic anionic gels containing both Ca- and Na- ions) with that of nerve fibers under comparable environmental conditions, we have demonstrated that the onset of an action potential is a reflection of a discontinuous volume transition in the superficial layer of nerve cells and fibers. Evidence for the existence of a first- order phase transition (involving volume and temperature changes) in nerve cells, fibers and synapses is presented.
doi_str_mv 10.1080/00150199908216221
format Article
fullrecord <record><control><sourceid>proquest_infor</sourceid><recordid>TN_cdi_proquest_miscellaneous_21367601</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>426282</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-d5c9ae3fbc4a546797a1160fc4f7a71b4ec34a0baf414b0358f32bdc2b7d7133</originalsourceid><addsrcrecordid>eNqFkEtLAzEUhYMoWKs_wF1WrhzNTTKTDrgpxRcU3HQfMpkEI9PMmDut9t-bUndFXF0u53z3cQi5BnYHbMbuGYOSQV3XbMah4hxOyATKShQlAD8lk71eZIM4JxeIH7kVUtYTMn_chtZF66jvEx3eDTo6JhMxjKGPNEQaXdpmNTQu4S21ruuQmthS3EUzoMNLcuZNh-7qt07J6ulxtXgplm_Pr4v5srBClWPRlrY2TvjGSlPKStXKAFTMW-mVUdBIZ4U0rDFegmyYKGde8Ka1vFGtAiGm5OYwdkj958bhqNcB99eY6PoNag6iUlV-a0rgYLSpR0zO6yGFtUk7DUzvs9JHWWVGHZgQcwxr89WnrtWj2XV98jkNG_CY0uP3mMmHf0nx9-If-KGBIg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>21367601</pqid></control><display><type>article</type><title>Evidence for phase transition in nerve fibers, cells and synapses</title><source>Taylor &amp; Francis Online</source><creator>Tasaki, I.</creator><creatorcontrib>Tasaki, I.</creatorcontrib><description>By examining rapid changes in the volume and temperature during excitation of a large number of excitable cells and tissues, we have shown that the excitation process is invariably accompanied by swelling and heat production in the superficial protoplasmic layer. By comparing the behavior of a model system (synthetic anionic gels containing both Ca- and Na- ions) with that of nerve fibers under comparable environmental conditions, we have demonstrated that the onset of an action potential is a reflection of a discontinuous volume transition in the superficial layer of nerve cells and fibers. Evidence for the existence of a first- order phase transition (involving volume and temperature changes) in nerve cells, fibers and synapses is presented.</description><identifier>ISSN: 0015-0193</identifier><identifier>EISSN: 1563-5112</identifier><identifier>DOI: 10.1080/00150199908216221</identifier><language>eng</language><publisher>Taylor &amp; Francis Group</publisher><subject>Bioelectric potentials ; Cells ; Ferroelectricity ; Fibers ; Nerve excitation ; Neurology ; phase transition ; Phase transitions ; Thermal effects</subject><ispartof>Ferroelectrics, 1999-01, Vol.220 (1), p.305-316</ispartof><rights>Copyright Taylor &amp; Francis Group, LLC 1999</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-d5c9ae3fbc4a546797a1160fc4f7a71b4ec34a0baf414b0358f32bdc2b7d7133</citedby><cites>FETCH-LOGICAL-c375t-d5c9ae3fbc4a546797a1160fc4f7a71b4ec34a0baf414b0358f32bdc2b7d7133</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/00150199908216221$$EPDF$$P50$$Ginformaworld$$H</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/00150199908216221$$EHTML$$P50$$Ginformaworld$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,59620,60409</link.rule.ids></links><search><creatorcontrib>Tasaki, I.</creatorcontrib><title>Evidence for phase transition in nerve fibers, cells and synapses</title><title>Ferroelectrics</title><description>By examining rapid changes in the volume and temperature during excitation of a large number of excitable cells and tissues, we have shown that the excitation process is invariably accompanied by swelling and heat production in the superficial protoplasmic layer. By comparing the behavior of a model system (synthetic anionic gels containing both Ca- and Na- ions) with that of nerve fibers under comparable environmental conditions, we have demonstrated that the onset of an action potential is a reflection of a discontinuous volume transition in the superficial layer of nerve cells and fibers. Evidence for the existence of a first- order phase transition (involving volume and temperature changes) in nerve cells, fibers and synapses is presented.</description><subject>Bioelectric potentials</subject><subject>Cells</subject><subject>Ferroelectricity</subject><subject>Fibers</subject><subject>Nerve excitation</subject><subject>Neurology</subject><subject>phase transition</subject><subject>Phase transitions</subject><subject>Thermal effects</subject><issn>0015-0193</issn><issn>1563-5112</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLAzEUhYMoWKs_wF1WrhzNTTKTDrgpxRcU3HQfMpkEI9PMmDut9t-bUndFXF0u53z3cQi5BnYHbMbuGYOSQV3XbMah4hxOyATKShQlAD8lk71eZIM4JxeIH7kVUtYTMn_chtZF66jvEx3eDTo6JhMxjKGPNEQaXdpmNTQu4S21ruuQmthS3EUzoMNLcuZNh-7qt07J6ulxtXgplm_Pr4v5srBClWPRlrY2TvjGSlPKStXKAFTMW-mVUdBIZ4U0rDFegmyYKGde8Ka1vFGtAiGm5OYwdkj958bhqNcB99eY6PoNag6iUlV-a0rgYLSpR0zO6yGFtUk7DUzvs9JHWWVGHZgQcwxr89WnrtWj2XV98jkNG_CY0uP3mMmHf0nx9-If-KGBIg</recordid><startdate>19990101</startdate><enddate>19990101</enddate><creator>Tasaki, I.</creator><general>Taylor &amp; Francis Group</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19990101</creationdate><title>Evidence for phase transition in nerve fibers, cells and synapses</title><author>Tasaki, I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-d5c9ae3fbc4a546797a1160fc4f7a71b4ec34a0baf414b0358f32bdc2b7d7133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Bioelectric potentials</topic><topic>Cells</topic><topic>Ferroelectricity</topic><topic>Fibers</topic><topic>Nerve excitation</topic><topic>Neurology</topic><topic>phase transition</topic><topic>Phase transitions</topic><topic>Thermal effects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tasaki, I.</creatorcontrib><collection>CrossRef</collection><jtitle>Ferroelectrics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tasaki, I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evidence for phase transition in nerve fibers, cells and synapses</atitle><jtitle>Ferroelectrics</jtitle><date>1999-01-01</date><risdate>1999</risdate><volume>220</volume><issue>1</issue><spage>305</spage><epage>316</epage><pages>305-316</pages><issn>0015-0193</issn><eissn>1563-5112</eissn><abstract>By examining rapid changes in the volume and temperature during excitation of a large number of excitable cells and tissues, we have shown that the excitation process is invariably accompanied by swelling and heat production in the superficial protoplasmic layer. By comparing the behavior of a model system (synthetic anionic gels containing both Ca- and Na- ions) with that of nerve fibers under comparable environmental conditions, we have demonstrated that the onset of an action potential is a reflection of a discontinuous volume transition in the superficial layer of nerve cells and fibers. Evidence for the existence of a first- order phase transition (involving volume and temperature changes) in nerve cells, fibers and synapses is presented.</abstract><pub>Taylor &amp; Francis Group</pub><doi>10.1080/00150199908216221</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0015-0193
ispartof Ferroelectrics, 1999-01, Vol.220 (1), p.305-316
issn 0015-0193
1563-5112
language eng
recordid cdi_proquest_miscellaneous_21367601
source Taylor & Francis Online
subjects Bioelectric potentials
Cells
Ferroelectricity
Fibers
Nerve excitation
Neurology
phase transition
Phase transitions
Thermal effects
title Evidence for phase transition in nerve fibers, cells and synapses
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T21%3A20%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evidence%20for%20phase%20transition%20in%20nerve%20fibers,%20cells%20and%20synapses&rft.jtitle=Ferroelectrics&rft.au=Tasaki,%20I.&rft.date=1999-01-01&rft.volume=220&rft.issue=1&rft.spage=305&rft.epage=316&rft.pages=305-316&rft.issn=0015-0193&rft.eissn=1563-5112&rft_id=info:doi/10.1080/00150199908216221&rft_dat=%3Cproquest_infor%3E426282%3C/proquest_infor%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=21367601&rft_id=info:pmid/&rfr_iscdi=true